scholarly journals CHARACTERIZATION OF OXYGEN DISTRIBUTION IN THE CROSS SECTION OF POLYACRYLONITRILE OXIDIZED FIBERS WITH SCANNING TRANSMISSION X-RAY MICROSCOPY

2011 ◽  
Vol 011 (8) ◽  
pp. 903-907
Author(s):  
Feng GAO ◽  
Xiangzhi ZHANG ◽  
Zhi GUO ◽  
Renzhong TAI ◽  
Jiang ZHAO
2020 ◽  
Vol 10 (14) ◽  
pp. 4836
Author(s):  
Takayuki Harano ◽  
Yasuo Takeichi ◽  
Masafumi Usui ◽  
Yutaka Arai ◽  
Reiko Murao ◽  
...  

The mechanical properties of carbon fibers (CFs) can be controlled by their internal structures such as the distribution of π-orbital-oriented domains, as well as the diameter and cross-sectional shape of the fiber. In this study, we investigated the carbon chemical structure maps of commercial polyacrylonitrile (PAN)- and pitch-based CFs using scanning transmission X-ray microscopy to evaluate the differences in the distribution of π-orbital-oriented domains. The graphene sheets in the PAN-based CFs have a fiber texture that is aligned along the fiber direction and randomly oriented within the cross section. The domain sizes within the cross section are less than the resolution limit (i.e., 50 nm). By contrast, the graphene sheets in the pitch-based CFs are aligned parallel to each other and form aggregates with a size ranging from approximately 100 nm to 1 μm within the cross sections. They form 200–300-nm stripes along the CF axis in the longitudinal sections.


Author(s):  
Shawn Williams ◽  
Xiaodong Zhang ◽  
Susan Lamm ◽  
Jack Van’t Hof

The Scanning Transmission X-ray Microscope (STXM) is well suited for investigating metaphase chromosome structure. The absorption cross-section of soft x-rays having energies between the carbon and oxygen K edges (284 - 531 eV) is 6 - 9.5 times greater for organic specimens than for water, which permits one to examine unstained, wet biological specimens with resolution superior to that attainable using visible light. The attenuation length of the x-rays is suitable for imaging micron thick specimens without sectioning. This large difference in cross-section yields good specimen contrast, so that fewer soft x-rays than electrons are required to image wet biological specimens at a given resolution. But most imaging techniques delivering better resolution than visible light produce radiation damage. Soft x-rays are known to be very effective in damaging biological specimens. The STXM is constructed to minimize specimen dose, but it is important to measure the actual damage induced as a function of dose in order to determine the dose range within which radiation damage does not compromise image quality.


Author(s):  
Dirk Doyle ◽  
Lawrence Benedict ◽  
Fritz Christian Awitan

Abstract Novel techniques to expose substrate-level defects are presented in this paper. New techniques such as inter-layer dielectric (ILD) thinning, high keV imaging, and XeF2 poly etch overflow are introduced. We describe these techniques as applied to two different defects types at FEOL. In the first case, by using ILD thinning and high keV imaging, coupled with focused ion beam (FIB) cross section and scanning transmission electron microscopy (STEM,) we were able to judge where to sample for TEM from a top down perspective while simultaneously providing the top down images giving both perspectives on the same sample. In the second case we show retention of the poly Si short after removal of CoSi2 formation on poly. Removal of the CoSi2 exposes the poly Si such that we can utilize XeF2 to remove poly without damaging gate oxide to reveal pinhole defects in the gate oxide. Overall, using these techniques have led to 1) increased chances of successfully finding the defects, 2) better characterization of the defects by having a planar view perspective and 3) reduced time in localizing defects compared to performing cross section alone.


2005 ◽  
Vol 71 (3) ◽  
pp. 1300-1310 ◽  
Author(s):  
Brandy Toner ◽  
Sirine Fakra ◽  
Mario Villalobos ◽  
Tony Warwick ◽  
Garrison Sposito

ABSTRACT Pseudomonas putida strain MnB1, a biofilm-forming bacterial culture, was used as a model for the study of bacterial Mn oxidation in freshwater and soil environments. The oxidation of aqueous Mn+2 [Mn+2 (aq)] by P. putida was characterized by spatially and temporally resolving the oxidation state of Mn in the presence of a bacterial biofilm, using scanning transmission X-ray microscopy (STXM) combined with near-edge X-ray absorption fine structure (NEXAFS) spectroscopy at the Mn L2,3 absorption edges. Subsamples were collected from growth flasks containing 0.1 and 1 mM total Mn at 16, 24, 36, and 48 h after inoculation. Immediately after collection, the unprocessed hydrated subsamples were imaged at a 40-nm resolution. Manganese NEXAFS spectra were extracted from X-ray energy sequences of STXM images (stacks) and fit with linear combinations of well-characterized reference spectra to obtain quantitative relative abundances of Mn(II), Mn(III), and Mn(IV). Careful consideration was given to uncertainty in the normalization of the reference spectra, choice of reference compounds, and chemical changes due to radiation damage. The STXM results confirm that Mn+2 (aq) was removed from solution by P. putida and was concentrated as Mn(III) and Mn(IV) immediately adjacent to the bacterial cells. The Mn precipitates were completely enveloped by bacterial biofilm material. The distribution of Mn oxidation states was spatially heterogeneous within and between the clusters of bacterial cells. Scanning transmission X-ray microscopy is a promising tool for advancing the study of hydrated interfaces between minerals and bacteria, particularly in cases where the structure of bacterial biofilms needs to be maintained.


1976 ◽  
Vol 31 (9-10) ◽  
pp. 612-621 ◽  
Author(s):  
W Müller-Klieser ◽  
W Kreutz

Abstract Mitochondria were isolated using sorbitol and high buffer concentration in the medium. X-ray diffraction patterns arising from the mitochondrial cristae-membrane were recorded in the fully dried state and in two different states in humidity. The Q-function evaluation of these X-ray dif­fraction diagrams resulted in electron density cross-section profiles, which consist of two main peaks of opposite sign and one, respectively two, smaller peaks. The total thickness of the membrane amounts to 120 Å in the dry and 140 Å to 160 Å in the wet state.An interpretation of the cross-section profile is tentatively proposed.


2016 ◽  
Vol 879 ◽  
pp. 790-794 ◽  
Author(s):  
Hui Xue Jiang ◽  
Hiromi Nagaumi ◽  
Shi Jie Guo ◽  
Chun Zou

An Al-Zn-Mg-Cu high strength alloy ingot produced by Direct-Chill casting was used in this study. The distribution of porosity in the cross section of the DC ingot was investigated by the precision density method (Archimeds’ principle), also X-ray microtomography technique was used to quantitatively analyze porosities in typical positions. The pattern in the cross section as well as in the thickness and width direction was obtained. The results show that: in the cross section of the ingot, porosity was increasing gradually from the surface to the center of the ingot; porosity shows an overall escalating trend from the surface to the center of the ingot both in thickness direction and in width direction; porosity was closely related to the cooling rate in the ingot; oxide inclusions have an effect on the formation of porosity to some extent.


2018 ◽  
Vol 611 ◽  
pp. A78 ◽  
Author(s):  
Elizabeth Johana Gonzalez ◽  
Martín de los Rios ◽  
Gabriel A. Oio ◽  
Daniel Hernández Lang ◽  
Tania Aguirre Tagliaferro ◽  
...  

Context. Merging galaxy clusters allow for the study of different mass components, dark and baryonic, separately. Also, their occurrence enables to test the ΛCDM scenario, which can be used to put constraints on the self-interacting cross-section of the dark-matter particle.Aim. It is necessary to perform a homogeneous analysis of these systems. Hence, based on a recently presented sample of candidates for interacting galaxy clusters, we present the analysis of two of these cataloged systems.Methods. In this work, the first of a series devoted to characterizing galaxy clusters in merger processes, we perform a weak lensing analysis of clusters A1204 and A2029/A2033 to derive the total masses of each identified interacting structure together with a dynamical study based on a two-body model. We also describe the gas and the mass distributions in the field through a lensing and an X-ray analysis. This is the first of a series of works which will analyze these type of system in order to characterize them.Results. Neither merging cluster candidate shows evidence of having had a recent merger event. Nevertheless, there is dynamical evidence that these systems could be interacting or could interact in the future.Conclusions. It is necessary to include more constraints in order to improve the methodology of classifying merging galaxy clusters. Characterization of these clusters is important in order to properly understand the nature of these systems and their connection with dynamical studies.


2021 ◽  
Author(s):  
Pilar Clariana ◽  
Ruth Soto ◽  
Conxi Ayala ◽  
Aina Margalef ◽  
Antonio Casas-Sainz ◽  
...  

<p>The characterization of the basement architecture of the Pyrenean Axial Zone, backbone of the chain, is crucial to understand its geodynamic evolution and the interplay between tectonism and magmatism. In this work, a new gravity-constrained cross section was built along the Central Pyrenees, between two of the largest Pyrenean Late Variscan granitic complexes, La Maladeta and Andorra-Mont Louis granites, to infer the geometry at depth of the basement host rocks. This cross section is ca. 65 km long and extends from the Mesozoic Bóixols basin in the South to the Late Variscan Bassiès granite to the North, close to the northern end of the Axial Zone. It is based on available geological maps, previous published works and new geological field data; together with newly acquired gravimetric stations (1141), to improve the existent spatial resolution of the gravity data from the databases of the Spanish and Catalan Geological Surveys, and density values from 65 rock samples covering all different lithologies in the cross section. Thus, its geometry at depth is constrained by means of an integrated 2.5D gravity/structural/petrophysical modelling.</p><p>The La Maladeta and Andorra-Mont Louis granites appear aligned in a WNW-ESE direction and both lie within the same Alpine basement unit, the Orri thrust sheet. They are separated about 40 km by the WNW-ESE-oriented Llavorsí syncline, formed by Devonian and Silurian rocks and limited to the north and south by south vergent thrusts. This syncline is located between two large Cambro-Ordovician anticlinorium structures, the La Pallaresa and Orri massifs to the north and south respectively, formed by a monotonous alternation of shales and sandstones with some intercalations of limestones and conglomerates affected by very low to medium grade of metamorphism. Most structures show southern vergence along the cross section, and its southern part is characterized by the occurrence of Triassic evaporites, a significant detachment level decoupling deformation between the Paleozoic basement and the Mesozoic-Cenozoic cover rocks.</p><p>The observed residual anomaly along the cross section shows a relative maximum, coinciding with the southern edge of the Axial Zone (Nogueras Zone) and southern half of the Orri massif, followed to the north by a relative large minimum. This gravity minimum in the core of the Axial Zone coincides with the northern half of the Orri massif, the Llavorsí syncline and southern half of the La Pallaresa massif and must be related at depth with rocks of lower density with respect to rocks located to the North and South. Two possible solutions have been postulated to explain the presence of lower density rocks: (i) the presence of Triassic evaporites at depth as a continuation to the North of the Triassic evaporites outcropping in the Rialp window located to the South and/or (ii) the presence of buried granitic bodies equivalent to the adjacent La Maladeta and Andorra-Mont Louis granites.</p>


Sign in / Sign up

Export Citation Format

Share Document