Effects of straw and living grass mulching on soil nutrients, soil microbial quantities and soil enzyme activities in a peach orchard

2011 ◽  
Vol 35 (12) ◽  
pp. 1236-1244 ◽  
Author(s):  
Gui-Ling ZHANG
2018 ◽  
Vol 15 (4) ◽  
pp. 1217-1228 ◽  
Author(s):  
Zhiwei Xu ◽  
Guirui Yu ◽  
Xinyu Zhang ◽  
Nianpeng He ◽  
Qiufeng Wang ◽  
...  

Abstract. Soil microorganisms play an important role in regulating nutrient cycling in terrestrial ecosystems. Most of the studies conducted thus far have been confined to a single forest biome or have focused on one or two controlling factors, and few have dealt with the integrated effects of climate, vegetation, and soil substrate availability on soil microbial communities and functions among different forests. In this study, we used phospholipid-derived fatty acid (PLFA) analysis to investigate soil microbial community structure and extracellular enzymatic activities to evaluate the functional potential of soil microbes of different types of forests in three different climatic zones along the north–south transect in eastern China (NSTEC). Both climate and forest type had significant effects on soil enzyme activities and microbial communities with considerable interactive effects. Except for soil acid phosphatase (AP), the other three enzyme activities were much higher in the warm temperate zone than in the temperate and the subtropical climate zones. The soil total PLFAs and bacteria were much higher in the temperate zone than in the warm temperate and the subtropical zones. The soil β-glucosidase (BG) and N-acetylglucosaminidase (NAG) activities were highest in the coniferous forest. Except for the soil fungi and fungi–bacteria (F/B), the different groups of microbial PLFAs were much higher in the conifer broad-leaved mixed forests than in the coniferous forests and the broad-leaved forests. In general, soil enzyme activities and microbial PLFAs were higher in primary forests than in secondary forests in temperate and warm temperate regions. In the subtropical region, soil enzyme activities were lower in the primary forests than in the secondary forests and microbial PLFAs did not differ significantly between primary and secondary forests. Different compositions of the tree species may cause variations in soil microbial communities and enzyme activities. Our results showed that the main controls on soil microbes and functions vary in different climatic zones and that the effects of soil moisture content, soil temperature, clay content, and the soil N ∕ P ratio were considerable. This information will add value to the modeling of microbial processes and will contribute to carbon cycling in large-scale carbon models.


Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1153
Author(s):  
Yage Li ◽  
Chun Han ◽  
Shan Sun ◽  
Changming Zhao

Long-term afforestation strongly changes the soil’s physicochemical and biological properties. However, the underlying mechanism of different tree species driving change in soil nutrients is still unclear in the long-term dryland plantations of the Loess Plateau, China. In this study, samples of surface soil (0–20 cm) and woody litter were collected from five plantations (≥50 years) of Caragana korshinskii, Armeniaca sibirica, Populus hopeiensis, Platycladus orientalis, and Pinus tabulaeformis and a natural grassland, and tested for the carbon, nitrogen, phosphorus, and potassium contents, as well as the soil sucrase (SC), urease (UE), and alkaline phosphorus (ALP) activities. We found that soil nutrients, enzyme activities, and the litter’s chemical properties obviously varied among five tree species. C. korshinskii significantly increased the soil’s TC, organic carbon (OC), total nitrogen (TN), available nitrogen (AN), and available potassium (AK) by 28.42%, 56.08%, 57.41%, 107.25%, and 10.29%, respectively, and also increased the soil’s available phosphorus (AP) by 18.56%; while P. orientalis significantly decreased soil TN (38.89%), TP (30.58%), AP (76.39%), TK (8.25%), and AK (8.33%), and also decreased soil OC (18.01%) and AN (1.09%), compared with those in grassland. The C. korshinskii plantation had higher quality litter and soil enzyme activities than the P. orientalis plantation. Moreover, 62.2% of the total variation in soil nutrients was explained by the litter’s chemical properties and soil enzyme activities, and the litter phosphorus (LP) and soil ALP had a more significant and positive impact on soil nutrients. Therefore, tree species, LP, and soil ALP were key factors driving soil nutrient succession in dryland plantations. The significantly positive nitrogen–phosphorus coupling relationship in the “litter–enzyme–soil” system revealed that the improving nitrogen level promoted the phosphorus cycle of the plantation ecosystem. Our results suggest that leguminous tree species are more suitable for dryland afforestation through the regulation of litter quality and soil enzyme activities.


2008 ◽  
Vol 53 (No. 4) ◽  
pp. 186-192 ◽  
Author(s):  
V. Balakrishnan ◽  
K. Venkatesan ◽  
K.C. Ravindran

Biocompost has been identified as an alternative to chemical fertilizers that increased soil microbial population and soil enzyme activities in sustainable farming. The objective of this field study was to evaluate the effect of three halophytic composts in combination with farmyard manure and phosphate solubilising bacteria (<i>Bacillus megaterium</i>) on soil microflora and enzyme activities. The results show that among nine treatments given, the application of <i>Suaeda</i> compost in combination with farmyard manure and phosphate solubilising bacteria (T<sub>9</sub>) significantly increased the soil microflora such as bacteria, fungi and actinomycetes and soil enzyme activities such as dehydrogenases, alkaline phosphatase, cellulase and urease in soil cultivated with <i>Arachis hypogaea</i>.


2015 ◽  
Vol 7 (4) ◽  
pp. 3087-3115 ◽  
Author(s):  
G. R. Mahajan ◽  
B. L. Manjunath ◽  
A. M. Latare ◽  
R. D'Souza ◽  
S. Vishwakarma ◽  
...  

Abstract. The aim of the present investigation was to study the spatio-temporal variability of the microbial activities in coastal saline soils (locally called Khazan) of Goa, India (west coast region). The coastal soil salinity is a major constraint for reduced crop yields and abandonment of farming in these areas. Three replicated global positioning based soil samples (0–0.20 m depth) from each of four salinity groups i.e. non-saline (EC=0.08±0.06 dS m−1), weakly saline (EC=2.04±0.06 dS m−1), moderately saline (EC=3.50±0.57 dS m−1) and strongly saline (EC=5.49±0.49 dS m−1) during three seasons–monsoon, post-monsoon and pre-monsoon were collected. Soil microbial activity in terms of soil microbial carbon (MBC), MBC as a fraction of soil organic carbon (SOC) (MBC/SOC), basal soil respiration (BSR), metabolic quotient (qCO2) and soil enzyme activities–dehydrogenase, phosphatase and urease was tested. In all the seasons, the soil cationic composition depended significantly (p<0.01) on salinity levels and the exchangeable sodium (Na) was the second most dominant among the tested cations. The MBC, MBC/SOC and BSR reduced significantly with increasing salinity, whereas qCO2 increased with increased salinity levels. In general, MBC, MBC/SOC and BSR and soil enzyme activities were observed as: salinity levels–strongly saline < moderately saline < weakly saline < non-saline and season–post–monsoon > monsoon > during pre-monsoon season. The mean MBC and MBC/SOC of non-saline soils were 1.61 and 2.28 times higher than that of strongly saline soils, whereas qCO2 of strongly saline soils was 2.4 times higher than that of non-saline soils. This indirectly indicates the salinity stress on the soil microorganisms. Irrespective of season, the soil enzyme activities decreased significantly (p<0.05) with increasing salinity levels. Suitable countermeasures needs to be taken up to alleviate the depressive salinity effect on the microbial and activity for the sustainable crop production in the coastal saline soils of Goa, India.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6497 ◽  
Author(s):  
Zengru Wang ◽  
Yubing Liu ◽  
Lina Zhao ◽  
Wenli Zhang ◽  
Lichao Liu

The importance of soil microbial flora in agro-ecosystems is well known, but there is limited understanding of the effects of long-term fertilization on soil microbial community succession in different farming management practices. Here, we report the responses of soil microbial community structure, abundance and activity to chemical (CF) and organic fertilization (OF) treatments in a sandy agricultural system of wheat-maize rotation over a 17-year period. Illumina MiSeq sequencing showed that the microbial community diversity and richness showed no significant changes in bacteria but decreased in fungi under both CF and OF treatments. The dominant species showing significant differences between fertilization regimes were Actinobacteria, Acidobacteria and Ascomycota at the phylum level, as well as some unclassified genera of other phyla at the genus level. As expected, soil organic matter content, nutrient element concentrations and bacterial abundance were enhanced by both types of fertilization, especially in OF, but fungal abundance was inhibited by OF. Redundancy analysis revealed that soil enzyme activities were closely related to both bacterial and fungal communities, and the soil nutrient, texture and pH value together determined the community structures. Bacterial abundance might be the primary driver of crop yield, and soil enzyme activities may reflect crop yield. Our results suggest a relatively permanent response of soil microbial communities to the long-term fertilization regimes in a reclaimed sandy agro-ecosystem from a mobile dune, and indicate that the appropriate dosage of chemical fertilizers is beneficial to sandy soil sustainability.


2021 ◽  
Author(s):  
Yage Li ◽  
Chun Han ◽  
Shan Sun ◽  
Changming Zhao

Abstract Background Long-term afforestation of different tree species strongly changes the soil physicochemical and biological properties. However, how tree species through litter quality and soil enzyme activities affect the succession of soil nutrients is still unclear in the dryland plantations. In this study, samples of surface soil (0–20 cm) and woody litter were collected from 55 years Caragana korshinskii, and 50 years Armeniaca sibirica, Populus hopeiensis, Platycladus orientalis, and Pinus tabulaeformis, and the natural grassland, and tested for the carbon, nitrogen, phosphorus, and potassium contents, as well as the soil sucrase (SC), urease (UE), and alkaline phosphorus (ALP) activities. Results We found that long-term dryland plantations increased soil total carbon (TC) by 1.69%-28.42%, but significantly decreased soil total phosphorus (TP) and total potassium (TK) by 11.87%-30.58% and 4.69%-8.25%. The C. korshinskii significantly increased soil TC, organic carbon (OC), total nitrogen (TN), available nitrogen (AN), available potassium (AK), UE, and ALP by 28.42%, 56.08%, 57.41%, 107.25%, 10.29%, 11.00%, and 107.81%, respectively, and also raised soil available phosphorus (AP) by 18.56%; while the P. orientalis significantly decreased soil TN, TP, AP, TK, AK, and UE by 38.89%, 30.58%, 76.39%, 8.25%, 8.33%, and 18.97%, respectively, and also reduced soil SC and ALP by 3.84% and 25.32%, compared to those in grassland. In addition, the C. korshinskii produced high-quality litter with lower carbon, the highest nitrogen and phosphorus, and higher potassium contents than those of P. orientalis. The litter chemical properties and soil enzyme activities together explained 62.2% of the total variation of soil nutrients, especially the litter phosphorus (LP) and soil ALP. Therefore, the tree species, LP, and soil ALP were key factors driving soil nutrient succession in dryland plantations. And the significantly positive coupling relationship between nitrogen and phosphorus in the "litter-enzyme-soil" system revealed that the improvement of nitrogen level promoted the phosphorus cycle of the ecosystem. Conclusions This study suggests choosing leguminous tree species with high-quality litter to establish plantations in the phosphorus-limited dryland, which will improve soil nutrients and alleviate nutrient limitations by adjusting soil enzyme activities.


Biologia ◽  
2009 ◽  
Vol 64 (3) ◽  
Author(s):  
Shao-shan An ◽  
Axel Mentler ◽  
Veronica Acosta-Martínez ◽  
Winfried Blum

AbstractOver-grazing and large-scale monocultures on the Loess plateau in China have caused serious soil erosion by water and wind. Grassland revegetation has been reported as one of the most effective counter measures. Therefore, we investigated soil aggregation, aggregate stability and soil microbial activities as key parameters for soil remediation through grassland revegetation.The results showed that soil microbial biomass carbon (Cmic) and microbial biomass nitrogen (Nmic) increased under revegetated grass communities compared to cropland and overgrazed pastures and were higher in surface layers (0–10 cm) than in the subsurface (10–20 cm). Although there are variations between the four investigated grassland communities, their values were 10 to 50 times higher in comparison to the cropland and overgrazed pastures, similar to the increase in soil enzyme activities, such as β-glucosidase and β-glucosaminidase.Soil aggregate stability (SAS) showed clear differences between the different land uses with two main soil aggregate fractions measured by ultra sound: < 63 μm and 100–250 μm, with approximately 70% and 10% of the total soil volume respectively. We also found positive correlations between SAS and soil microbial parameters, such as Cmic, Nmic, and soil enzyme activities. From this, we concluded that revegetation of eroded soils by grasses accelerates soil rehabilitation.


Sign in / Sign up

Export Citation Format

Share Document