scholarly journals miR-767-3p Inhibits Growth and Migration of Lung Adenocarcinoma Cells by Regulating CLDN18

Author(s):  
Yi Long Wan ◽  
Han Jue Dai ◽  
Wei Liu ◽  
Hai Tao Ma

Claudin18 (CLDN18) is necessary for intercellular junctions and is reported to be involved in cell migration and metastasis, making it like an oncogene in various cancer types. However, the biological function and regulatory mechanisms of CLDN18 in lung adenocarcinoma are not yet clear. In this study, we found downregulation of miR-767-3p and upregulation of CLDN18 in lung adenocarcinoma tissue and cell lines. In addition, there was a negative correlation between the expression of miR-767-3p and CLDN18 in lung adenocarcinoma. Double luciferase reporter gene analysis showed that miR-767-3p modulates the expression of CLDN18 by binding its 3′-untranslated regions (3′-UTR). Knockdown of CLDN18 results in a decrease in the growth, migration, and invasion of lung adenocarcinoma cells. Although overexpression of miR-767-3p inhibits lung adenocarcinoma cell growth and migration, these effects can be rescued by reexpressing CLDN18. In summary, the data suggest that miR-767-3p inhibits tumor cell proliferation, migration, and invasion by targeting CLDN18, providing a promising therapeutic target for lung adenocarcinoma.

2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110093
Author(s):  
Mingxin Liu ◽  
Hong Wu ◽  
Yiqiang Liu ◽  
Yan Tan ◽  
Songtao Wang ◽  
...  

MiR-326 functions as an antioncogene in the several types of cancer. However, the underling mechanisms through which miRNA-326 regulates the anti-carcinogenesis of lung adenocarcinoma have remained elusive. The aim of this study was to explore the role and regulatory mechanism of miR-326 in cell proliferation, invasion, migration and apoptosis in lung adenocarcinoma. Quantitative real-time PCR (qRT-PCR) was used to detect the expression pattern of miR-326 in human bronchial epithelial cells (HBES-2B), 4 kinds of lung adenocarcinoma cell lines (H23, H1975, H2228, H2085) and 20 lung adenocarcinoma tissues. Then, H23 cells were infected with miR-326 mimics, miR-326 inhibitors and si-ZEB1 to build up-regulated miR-326 cell lines, down-regulated ZEB1(zinc-finger-enhancer binding protein 1)cell lines, simultaneous down-regulated ZEB1 and miR-326 cell lines. Moreover, CCK-8 assay, transwell invasion assay, wound healing assay and flow cytometry assay were employed to examine the effects of miR-326 and ZEB1 on the proliferation, invasion, migration and apoptosis abilities of H23 cells. Western blot was performed to explore the effects of miR-326 and ZEB1 on the expression of invasion and migration related proteins N-cadherin, E-cadherin, MMP7, MMP13, SLUG and apoptotic proteins PARP, BAX. On the mechanism, a dual-luciferase reporter gene was used to measure the target relationship between miR-326 and ZEB1. MiR-326 expression was significantly downregulated in lung adenocarcinoma tissues and cells. Overexpression of miR-326 significantly inhibited the malignant behaviors of H23 cells. Mechanically, luciferase reporter assay showed that ZEB1 was a direct target of miR-326. MiR-326 mimic downregulated the expression of ZEB1. Furthermore, knocking down ZEB1 strongly inhibited the proliferation, invasion and migration of H23 cells but promoted apoptosis. MiR-326 could target ZEB1 to inhibit the proliferation, invasion and migration of lung adenocarcinoma cells and promote apoptosis, which is a potential therapeutic target for lung adenocarcinoma.


2017 ◽  
Vol 42 (5) ◽  
pp. 1779-1788 ◽  
Author(s):  
Jinchang Lu ◽  
Chunling Du ◽  
Junxia Yao ◽  
Bo Wu ◽  
Yanhong Duan ◽  
...  

Background/Aims: The transcription factor CCAAT/enhancer-binding protein α (C/EBPα) is a basic leucine zipper transcription factor that plays essential roles in tumor progression. Although decreased or absent C/EBPα expression in many cancers suggests a possible role for C/EBPα as a tumor suppressor, the functions of C/EBPα in lung adenocarcinoma remain unclear. Methods: Here, C/EBPα expression levels in 26 lung adenocarcinoma and para-carcinoma tissue samples were detected by qRT-PCR and immunohistochemistry. Cell transwell assays, wound healing assay and three-dimensional spheroid invasion assay were performed to assess the effects of C/EBPα on migration and invasion in lung adenocarcinoma cells in vitro. Western blotting was applied to analyze the potential mechanisms. Results: C/EBPα was found to be decreased in lung adenocarcinoma tissues compared to para-carcinoma tissues. Overexpression of C/EBPα significantly inhibited the migration and invasion of lung adenocarcinoma cells. In addition, C/EBPα overexpression suppressed the epithelial–mesenchymal transition (EMT) that was characterized by a gain of epithelial and loss of mesenchymal markers. Further study showed that C/EBPα suppressed the transcription of β-catenin and downregulated the levels of its downstream targets. Conclusion: Our data suggest that C/EBPα inhibits lung adenocarcinoma cell invasion and migration by suppressing β-catenin-mediated EMT in vitro. Thus, C/EBPα may be helpful as a potential target for treatment of lung adenocarcinoma.


2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Xiaoju Li ◽  
Shengtian Su ◽  
Dan Ye ◽  
Zhigao Yu ◽  
Wenjing Lu ◽  
...  

Abstract Background Circular RNAs (circRNAs) are a novel type of endogenous RNAs and play vital roles in lung adenocarcinoma. However, the function and underlying mechanism of circ_0020850 in lung adenocarcinoma remain unknown. Methods The levels of circ_0020850, microRNA-326 (miR-326), and Beclin1 (BECN1) were analyzed by real-time quantitative polymerase chain reaction and western blot analyses. The migration and invasion were determined by wound healing and transwell assays, respectively. Colony formation assay was used to assess cell proliferation ability. The angiogenic ability was analyzed by Matrigel angiogenesis assay. The apoptosis rate was calculated by flow cytometry assay. Dual-luciferase reporter, RNA immunoprecipitation (RIP), and RNA pull-down assays were conducted to confirm the interaction relationship among circ_0020850, miR-326, and BECN1. A xenograft mice model was established to assess the role of circ_0020850 in vivo. Results We found that circ_0020850 was obviously overexpressed in lung adenocarcinoma tissues and cells. Knockdown of circ_0020850 inhibited migration, invasion, proliferation, and angiogenesis but induced apoptosis in lung adenocarcinoma cells in vitro, as well as curbed tumor growth in vivo. MiR-326 was a target of circ_0020850, and knockdown of miR-326 abolished the suppression effect of circ_0020850 on the malignant behaviors of lung adenocarcinoma cells. Additionally, miR-326 could negatively regulate BECN1 expression, thereby regulating lung adenocarcinoma cell phenotypes. Importantly, circ_0020850 could directly bind to miR-326 and thus relieve miR-326-mediated inhibition on BECN1. Conclusion Circ_0020850 promoted the malignant development of lung adenocarcinoma by regulating miR-326/BECN1 axis, indicating that circ_0020850 might serve as a promising target for the diagnosis and treatment of lung adenocarcinoma patients.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jiguang Meng ◽  
Xuxin Chen ◽  
Zhihai Han

Abstract Background To investigate the role and its potential mechanism of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 (PFKFB4) in lung adenocarcinoma. Methods Co-immunoprecipitation was performed to analyze the interaction between PFKFB4 and SRC-2. Western blot was used to investigate the phosphorylation of steroid receptor coactivator-2 (SRC-2) on the condition that PFKFB4 was knockdown. Transcriptome sequencing was performed to find the downstream target of SRC-2. Cell Counting Kit-8 (CCK-8) assay, transwell assay and transwell-matrigel assay were used to examine the proliferation, migration and invasion abilities in A549 and NCI-H1975 cells with different treatment. Results In our study we found that PFKFB4 was overexpressed in lung adenocarcinoma associated with SRC family protein and had an interaction with SRC-2. PFKFB4 could phosphorylate SRC-2 at Ser487, which altered SRC-2 transcriptional activity. Functionally, PFKFB4 promoted lung adenocarcinoma cells proliferation, migration and invasion by phosphorylating SRC-2. Furthermore, we identified that CARM1 was transcriptionally regulated by SRC-2 and involved in PFKFB4-SRC-2 axis on lung adenocarcinoma progression. Conclusions Our research reveal that PFKFB4 promotes lung adenocarcinoma cells proliferation, migration and invasion via enhancing phosphorylated SRC-2-mediated CARM1 expression.


2021 ◽  
Vol 20 ◽  
pp. 153303382098586
Author(s):  
Xuhui Wu ◽  
Gongzhi Wu ◽  
Huaizhong Zhang ◽  
Xuyang Peng ◽  
Bin Huang ◽  
...  

Objective: We aimed to investigate the mechanism of the regulatory axis of miR-196b/AQP4 underlying the invasion and migration of lung adenocarcinoma (LUAD) cells. Methods: LUAD miRNA and mRNA expression profiles were downloaded from TCGA database and then differential analysis was used to identify the target miRNA. Target gene for the miRNA was obtained via prediction using 3 bioinformatics databases and intersection with the differentially expressed mRNAs searched from TCGA-LUAD. Then, qRT-PCR and western blot were used to validate the expression of miR-196b and AQP4. Dual-luciferase reporter assay was performed to confirm the targeting relationship between miR-196b and AQP4. Transwell assay was used to investigate the migration and invasion of LUAD cells. Results: MiR-196b was screened out by differential and survival analyses, and the downstream target gene AQP4 was identified. In LUAD, miR-196b was highly expressed while AQP4 was poorly expressed. Besides, overexpression of miR-196b promoted cell invasion and migration, while overexpression of AQP4 had negative effects. Moreover, the results of the dual-luciferase reporter assay suggested that AQP4 was a direct target of miR-196b. In addition, we also found that overexpressing AQP4 could suppress the promotive effect of miR-196b on cancer cell invasion and migration. Conclusion: MiR-196b promotes the invasion and migration of LUAD cells by down-regulating AQP4, which helps us find new molecular targeted therapies for LUAD.


2021 ◽  
pp. 1-8
Author(s):  
Bo Xu ◽  
Yiling Qian ◽  
Chunxiao Hu ◽  
Yongsheng Wang ◽  
Hong Gao ◽  
...  

Numerous studies have indicated that microRNAs (miRNAs) play critical roles in the development and progression of cancer. However, how changes to the expression levels of miRNAs in response to dexmedetomidine affects the progression of lung cancer remains poorly understood. In this study, we treated the lung adenocarcinoma cell line-A549 with dexmedetomidine and then examined the changes to the expression levels of miRNAs. We found that one of the most significantly upregulated miRNAs was miR-493-5p, which has an important role in the growth and apoptosis of lung adenocarcinoma (LUAD) cells. In addition, bioinformatics searches and luciferase reporter assays revealed that miR-493-5p targets RASL11B, which has a high degree of similarity to RAS. Finally, database searches revealed that RASL11B is associated with survival of LUAD cells. In conclusion, dexmedetomidine causes changes to the expression levels of miRNAs in LUAD, including significant upregulation of miR-493-5p. MiR-493-5p targets RASL11B, thereby inhibiting cell growth and inducing apoptosis in LUAD.


2021 ◽  
Author(s):  
Yilin Hu ◽  
Huiling Sun ◽  
Qiping Lu ◽  
Hongliang Mei ◽  
Rong Liu

Abstract Background MiR-92a-3p has been reported to play a part in hepatocellular carcinoma (HCC), a leading type of lethal cancer around the world. In this study, we explored the function and mechanism of miR-92a-3p in HCC. Methods Firstly, the expression of miR-92a-3p in HCC along with its relationship with PTEN was analyzed through biological information. To investigate the impact of miR-92a-3p on the migration and invasion of HCC cells, we performed scratch wound healing and transwell assays. Next, RT-qPCR, western blot and dual luciferase reporter gene assays were conducted to determine whether PTEN is targeted by miR-92a-3p, which was then verified through rescue assays. Afterwards, in vivo animal experiments were carried out to determine the function of miR-92a-3p in HCC tissues. As an established fact, PETN is an anti-oncogene with frequent mutation inactivation in human cancers. Thus, we used the database to predict the mutation of PETN and its mutation frequency. Finally, CRISPR-cas12a was applied to detect the R130Q mutation on PETN in HCC clinical samples. Results This study found that the migration and invasion of HCC could be suppressed by inhibiting miR-92a-3p, which regulates the proliferation, migration and invasion of HCC through the regulation of PETN. The bioinformatics analysis indicated higher mutation frequency of R130Q/G/L* site on the PETN gene, and greater impact of R130Q site mutation on the progression of HCC. CRISPR-cas12a detected 26 cases of R130Q mutations on PTEN in 40 HCC clinical samples Conclusion Collectively, this study revealed that miR-92a-3p promoted the invasion and migration of HCC by targeting PTEN, and that the stability of PETN also affected the development of HCC, which may enrich and deepen our knowledge on the progression of HCC.


Sign in / Sign up

Export Citation Format

Share Document