Formulation and Evaluation of a Pulsatile Delivery System of Losartan Potassium by Factorial Design

Author(s):  
Umesh D Shivhare ◽  
V N Kakade

The present study was aimed to prepare a time-dependent pulsed release system for the programmed release of losartan potassium for the treatment of hypertension. The core tablets of losartan potassium were prepared using wet granulation containing a superdisintegrant. The design was based on 32 full factorial design containing 2 factors evaluated at 3 levels and the experimental trials were performed on coating of the core tablets. Eudragit S100 and Eudragit L100 were used as pH dependent polymers for coating of the tablets. Factors influenced the lag time and In-vitro drug release of formulations, called as dependent factors. Dissolution studies of coated tablets in media with pH (1.2 and 6.8) showed that drug release could be modulated by optimizing the concentration of Eudragit L100: Eudragit S100. Polynomial mathematical model generated for various response variable using multiple linear regression analysis, were found to be statistically significant. Contour plots and response surface plots were drawn and optimum formulation were selected by feasibility and desirability function. The experimental values obtained from the optimized formulation highly agreed with the predicted values. The results of in vitro dissolution studies indicated that formulation P5 is the most successful formulation of the study and exhibited lag time 5.5 h and drug release 95.23 % in 12 h. The total release pattern was very close to the theoretical release profile of pulsed release system. The study showed that lag time prior to drug release was highly affected by the coating level. The dissolution data revealed that the level of coating and the ratio of polymers are very important to achieve an optimum formulation. Stability study of the optimized formulation indicates no significant difference in release profile after a period of one month.

Author(s):  
N. SHIVA KRISHNA ◽  
B. JAYANTHI ◽  
A. MADHUKAR

Objective: The main objective of the present study was to formulate and evaluate a time-controlled single-unit oral pulsatile drug delivery system containing Zafirlukast for the prevention of nocturnal asthma attacks. To provide time-scheduled drug release for Asthma disease. It is used for preventing asthmatic attacks at early morning. Pulsatile release dosage form is increasing patient compliance by reducing the dosing frequency, especially in the early morning. Methods: Core tablets were prepared by incorporating different concentrations of natural and synthetic super disintegrants. Drug-containing core tablets (ZC1-ZC15) with different compositions of natural super disintegrants (Plantago ovata seed powder, Locust bean gum) synthetic super disintegrants (Sodium starch glycolate (SSG), Cross carmellose sodium (CCS), Crospovidone (CP)) were prepared by direct compression technique. The core tablets were subjected to pre-formulation, physicochemical and In vitro drug release studies. The fast disintegrating core tablet formulation was selected and press-coated tablets (P1-P11) were prepared with different compositions of hydrophobic polymers Eudragit RS100, Eudragit RL 100, Ethylcellulose and hydrophilic polymers Hydroxypropyl methylcellulose K4M, K100M. The optimized formulation was selected and quantified based on in vitro drug release profile in simulated gastric and intestinal fluids. Results: The pre and post-compression parameters of tablets were also found to be within limits. Formulation ZC5 with 16 mg of Locust bean gum showed the least disintegrating time, i.e., 22.13 sec, and was selected as the best immediate release core tablet. The press-coated tablet formulation P8 having 62.5 mg Eudragit RS100 and 62.5 mg of HPMC K4M in ratio 1:1 over the core tablet ZC5 showed rapid and drug release nearly after 4 h lag time and 98.86 % up to 12 h. Accelerated stability studies of the optimized formulation P8 indicated no significant difference in release profile after 3 mo. Conclusion: The in vitro dissolution study showed that lag time before drug release was highly affected by the coating amount level and nature of coating polymer used. Time-controlled pulsatile release tablets can be prepared using press-coating techniques.


INDIAN DRUGS ◽  
2020 ◽  
Vol 57 (07) ◽  
pp. 52-57

The aim of this research was to develop mucoadhesive buccal patches of nicergoline by using Factorial Design of Experiment, in order to provide a sustained release of drug into the systemic circulation. A 33 factorial experimental design was employed for optimization and to study the effect of formulation variables on responses R1 (% swelling index), R2 (% drug content), R3 (mucoadhesion time) and R4 (mucoadhesion strength). In vitro drug release study was performed on the optimized formulations. All the prepared formulations had good mechanical strength, mucoadhesion strength, neutral surface pH and drug content up to 98.17%. In vitro drug release study revealed that F-5 formulation showed promising sustained drug release profile (98.21%) for over 8 h and could be a potential substitute for marketed conventional formulations. The developed formulation (F5) was found to be optimized with considerably good stability and extended drug release profile.


2021 ◽  
Vol 11 (3-S) ◽  
pp. 65-73
Author(s):  
Keyur S. Patel ◽  
Akshar N. Rao ◽  
Deepa R. Patel ◽  
Dhaval M. Patel ◽  
Advaita B. Patel

The objective of the present study was to develop gastroretentive floating tablets of quetiapine fumarate. The gastroretentive floating tablets of quetiapine fumarate were formulated using natrosol 250 HHX as a sustained release polymer and sodium bicarbonate as a gas forming agents.  A 32 factorial design was employed to study the influence of concentration of natrosol HHX 250 (X1) and concentration of sodium bicarbonate (X2) on the dependent variables % drug release at 1h (Y1), % drug release at 8 h (Y2) and floating lag time (Y3). The optimized formulation (O1) showed floating lag time 49 ± 3 sec and % drug release 99.54± 0.81 at 12 h. The in vitro release of F1-F9 batches were found in between 99.95 ± 1.18 %  to  86.32 ±1.71 % at 12 h. Floating lag time of F1-F9 batches were found to be 25± 2 sec to 178 ± 3 sec. FTIR studies shown that there was no  interaction between quetiapine fumarate and excipients. From the factorial design batches it was found that floating lag time was decreased with increasing the amount of sodium bicarbonate and decreasing the amount of natrosol 250 HHX. Here % release of drug was decreased with increase the extent of natrosol 250 HHX. The in-vitro release kinetics revealed Korsmeyer-Peppas model is followed and drug release is by anomalous diffusion. Keywords: Quetiapine fumarate, Natrosol 250 HHX, Sodium bicarbonate, Gastroretentive floating tablets


Author(s):  
Chiranjibi Adhikari ◽  
Gururaj S Kulkarni ◽  
Shivakumar Swamy

Objective: The main objective of the present study was to design and evaluate a time-controlled single unit oral pulsatile drug delivery system containing salbutamol sulfate for the prevention of nocturnal asthma attacks.Methods: Drug containing core tablets (C1-C10) with different composition of superdisintegrants such as sodium starch glycolate, croscarmellose sodium, and crospovidone were prepared by direct compression technique. The fast disintegrating core tablet formulation was selected, and press-coated tablets (P1-P11) were prepared with different compositions of hydrophobic and hydrophilic polymers: Ethylcellulose-20 (EC-20), hydroxypropyl methylcellulose K4M, and low substituted hydroxypropyl cellulose (L-HPC LH11). The coating polymers were selected and quantified based on in vitro lag time and drug release profile in simulated gastric and intestinal fluids.Results: Formulation C10 with 7.5% crospovidone showed least disintegrating time, i.e., 0.31 min and was selected as the best immediate release core tablet. The press-coated tablet formulation P11 having 360 mg barrier layer of EC-20 and L-HPC LH11 in ratio 14:1 over the core tablet C10 showed rapid and complete drug release nearly after 6 h lag time. Accelerated stability studies of the optimized formulation P11 indicated no significant difference in release profile after a period of 6 months.Conclusion: The in vitro dissolution study showed that lag time before drug release was highly affected by the coating level and nature of coating polymer used. Time-controlled pulsatile release tablets can be prepared using press-coating techniques.


2018 ◽  
Vol 10 (6) ◽  
pp. 168
Author(s):  
Prasanta Kumar Mohapatra ◽  
Ch. Prathibha ◽  
Vivek Tomer ◽  
Mandeep Kumar Gupta ◽  
Satyajit Sahoo

Objective: The current study was projected to prepare a losartan potassium gastroretentive drug delivery system (GRDDS) of floating tablets was planned to enhance the gastric residence time, thus prolong the drug release.Methods: Effervescent floating matrix tablets of losartan potassium were prepared by direct compression technique using polymers like HPMC k4m, guar gum, and gum karaya, with lubricants magnesium stearate and talc. In the present study, sodium bicarbonate was incorporated as a gas generating agent. Total nine formulations were designed and evaluated for pre-compression parameters known as the angle of repose, bulk density, tapped density, Hausner’s ratio, compressibility index, and post-compression parameters are uniformity of weight, hardness, and drug content percentage, variability, in vitro buoyancy, dissolution studies, and Fourier transform infrared spectroscopy (FTIR).Results: An in vitro dissolution study was carried out by using buffer pH 1.2. From in vitro dissolution studies, it has been found that an increase in polymer concentration diminishes the drug release profile. The in vitro drug release percentage from F4-F9 formulations ranged from 60.28%-98.66% at the closing of 12 h and buoyancy found over 12 h.Conclusion: The in vitro drug release from F1-F3 and F7-F9 followed zero-order, F4 followed Higuchi order, F5 and F6 followed Hixon-Crowell release kinetics. The drug release mechanism was set up to be F1-F8 non-Fickian (anomalous behavior) and F9 having Fickian diffusion type.


Author(s):  
B. Senthilnathan ◽  
A. Maheswaran ◽  
K. Gopalasatheeskumar ◽  
K. Masilamani ◽  
Raihana Z Edros

In this work, polymeric nanoparticles containing Pregabalin was prepared and optimized the ideal concentration of polymer based on its in vitro release profile for a period of 24hrs.The nanoparticles were prepared by solvent displacement method using various concentrations of Eudragit S100 (EPNP1-EPNP5). The prepared nanoparticles were characterized for its particle size, zeta potential, drug content, entrapment efficiency and invitro drug release profile. The preformulation study results confirmed the compatibility between the drug and other excipients used in the formulation. The optimized formulation was selected based on its particle size, entrapment efficiency and in vitro drug release profile. The formulation which contains 300mg of Eudragit S100 (EPNP5) was selected as optimized concentration for the controlled release of Pregabalin for a period of 24hrs.


2020 ◽  
Vol 12 ◽  
Author(s):  
Sagar R. Pardeshi ◽  
Harshal A. Mistari ◽  
Rakhi S. Jain ◽  
Pankaj R. Pardeshi ◽  
Rahul L. Rajput ◽  
...  

Background: Moxifloxacin is a BCS class I drug used in the treatment of bacterial conjunctivitis and keratitis. Despite its high water solubility, it possesses limited bioavailability due to anatomical and physiological constraints associated with the eyes which required multiple administrations to achieve a therapeutic effect. Objective: In order to prolong drug release and to improve antibacterial efficacy for the treatment of bacterial keratitis and conjunctivitis, moxifloxacin loaded nanoemulsion was developed. Methods: The concentration of oil (oleic acid), surfactant (tween 80), and cosurfactant (propylene glycol) were optimized by employing a 3-level 2-factorial design of experiment for the development of nanoemulsion. The developed nanoemulsion was characterized by particle size distribution, viscosity, refractive index, pH, drug content and release, transmission electron microscopy (TEM), and antibacterial study. The compatibility of the drug with the excipients was accessed by Fourier transform infrared spectroscopy (FTIR). Result: The average globule size was found to be 198.20 nm. The TEM study reveals the globules were nearly spherical and are well distributed. In vitro drug release profile for nanoemulsion shown sustained drug release (60.12% at the end of 6 h) compared to drug solution, where complete drug released within 2 h. The antibacterial effectiveness of the drug-loaded nanoemulsion was improved against S. aureus compared with the marketed formulation. Conclusion: The formulated sustained release nanoemulsion could be a promising alternative to eye drop with improved patient compliance by minimizing dosing frequency with improved antibacterial activity.


2020 ◽  
Vol 10 (3) ◽  
pp. 237-249
Author(s):  
Shashank Soni ◽  
Veerma Ram ◽  
Anurag Verma

Introduction: Hydrodynamically balanced system (HBS) possesses prolonged and continuous delivery of the drug to the gastrointestinal tract which improves the rate and extent of medications that have a narrow absorption window. The objective of this work was to develop a Hydrodynamically Balanced System (HBS) of Metoprolol Succinate (MS) as a model drug for sustained stomach specific delivery. Materials and Methods: Experimental batches were designed according to 3(2) Taguchi factorial design. A total of 9 batches were prepared for batch size 100 capsules each. Formulations were prepared by physically blending MS with polymers followed by encapsulation into hard gelatin capsule shell of size 0. Polymers used were Low Molecular Weight Chitosan (LMWCH), Crushed Puffed Rice (CPR), and Hydroxypropyl Methylcellulose K15 M (HPMC K15M). Two factors used were buoyancy time (Y1) and time taken for 60% drug release (T60%; Y2). Results: The drug excipient interaction studies were performed by the thermal analysis method which depicts that no drug excipient interaction occurs. In vitro buoyancy studies and drug release studies revealed the efficacy of HBS to remain gastro retentive for a prolonged period and concurrently sustained the release of MS in highly acidic medium. All formulations followed zero-order kinetics. Conclusion: Developed HBS of MS with hydrogel-forming polymers could be an ideal delivery system for sustained stomach specific delivery and would be useful for the cardiac patients where the prolonged therapeutic action is required.


2015 ◽  
Vol 7 (1-2) ◽  
pp. 65-74
Author(s):  
K. Latha ◽  
V. V. Srikanth ◽  
S. A. Sunil ◽  
N. R. Srinivasa ◽  
M. U. Uhumwangho ◽  
...  

The objective of this investigation is to study the applicability of gum karaya, the natural gum for the preparation and in vitro evaluation of losartan potassium, as Chronotherapeutic Drug Delivery System (ChDDS). The compression-coated timed-release tablets (CCT) containing losartan potassium in the core tablet were prepared by dry coating technique with different ratios of gum karaya as the outer coat. The parameters investigated were tensile strength, friability, in vitro dissolution studies and drug concentration. The optimized formulation was further characterized by powder XRD and FTIR to investigate interactions and no interactions observed. The tensile strength and friability of all the CCT were between 1.06-1.23 MN/m2 and < 0.3% respectively.  All the CCT showed a clear lag time before a burst release of drug. However, the lag time of drug release increased as the amount of gum karaya in the outer layer increased. For instance, the lag time of LGK1, LGK2, LGK3, LGK4, LGK5, LGK6 and LGK7 were 16, 10.5, 5.5, 3, 2, 1.5 and 0.5 hrs respectively.  The drug content of all the CCT was >98%. Formulation LGK3 was taken as an optimized formulation which can be exploited to achieve ChDDS of losartan potassium for the treatment of hypertension. 


2021 ◽  
Vol 11 (5) ◽  
pp. 13089-13101

In this study, a sustainable HPLC-UV-DAD method was developed and validated for the determination of allopurinol in tablets and optimization of the dissolution test using factorial design. The separation of the analyte from the sample matrix was achieved in 3.01 minutes in a C8 column (4.6 mm X 150 mm X 5 μm), using mobile phase 0.1 mol L-1 HCl (25%) + ethanol (50%) + ultrapure water (25%) by UV detection at 249 nm. The method presented satisfactory analytical parameters of validation (specificity, selectivity, linearity, stability, precision, accuracy, and robustness), showing no matrix effects. The dissolution test was optimized by complete factorial design 23 and, the optimal conditions were: HCl 0.001 mol L-1, apparatus II (paddle) and 75 rpm. The analytical procedures and dissolution tests were applied to allopurinol tablets marketed in Bahia, Brazil, to evaluate the dissolution studies. The pharmaceuticals had similar dissolution profiles and first-order dissolution kinetics. This new and sustainable HPLC-UV-DAD method is friendly to the environment and can be used for the routine pharmaceutical analysis of allopurinol in fixed dosage forms.


Sign in / Sign up

Export Citation Format

Share Document