Flower-Mediated Phytosynthesis of Silver Nanoparticles from Butea monosperma Lam. and their Evaluation for Antibacterial Activity

Author(s):  
Dipika Rathod ◽  
Illa Patel ◽  
Priyanka Chaudhari ◽  
Anita Solanki Solanki

The green synthesis of metallic nanoparticles is the simplest, affordable and eco-friendly approach, which attracted researchers because of their immense applications. The plant-mediated synthesis of nanoparticles plays an important role in the field of nanobiotechnology as they devoid of harmful chemicals. Plenty of reports were available on synthesis of silver nanoparticles using the vegetative parts of plant especially foliar/leaf parts but reports on floral/flower parts utilized for silver nanoparticles synthesis were limited. Although flowers were found as potential source of many important phytochemicals which can be used for treatments of many diseases and Butea monosperma Lam. Flowers were utilized for curing several diseases so, here its extract were used for synthesis of silver nanoparticles by using it as capping and stabilizing agent. The present study, deals with synthesis of silver nanoparticles (AgNPs) from Butea monosperma Lam. Flower extracts through greener approach and then synthesized AgNPs were characterized using UV- visible spectrometry, X-Ray diffraction (XRD), Fourier transform infra-red (FTIR) spectroscopy and Scanning electron microscopy (SEM) which confirms its synthesis from silver metal. Further, the anti-bacterial properties of the synthesized silver nanoparticles were studied, and the results revealed that the flower mediated silver nanoparticles had showed strong anti-bacterial activity against Pseudomonas sp., Escherichia coli, Bacillus subtilis and Staphylococcus aureus.

2018 ◽  
Vol 10 (3) ◽  
pp. 422-428 ◽  
Author(s):  
Pannerselvam Balashanmugam ◽  
Hyung Joo Kim ◽  
Vijay Singh ◽  
Rangarajulu Senthil Kumaran

The synthesis of metallic nanoparticles using plant extracts has attracted much attention. In this study, silver nanoparticles (AgNPs) were synthesized using the Ginkgo biloba plant-leaf extract and their antibacterial and larvicidal activities were investigated. AgNPs were characterized using UV-visible, X-ray diffraction (XRD), Fourier transform infrared (FTIR), energy-dispersive X-ray (EDX) spectroscopy and field emission scanning electron microscope (FESEM) analysis. The UV-visible spectral analysis showed a surface plasmon resonance (SPR) peak at 430 nm, the FESEM analysis revealed size of AgNPs between 25–45 nm and the XRD data confirmed the formation of the AgNPs using G. biloba-mediated green synthesis. AgNPs showed the highest antibacterial activities against Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtills, Enterobacter aerogens, Salmonella paratyphi and Escherichia coli. Also, the AgNPs exerted a significant larvicidal effect on the Culex mosquito larvae.


Author(s):  
B. Anandh ◽  
A. Muthuvel ◽  
M. Emayavaramban

The present investigation demonstrates the formation of silver nanoparticles by the reduction of the aqueous silver metal ions during exposure to the Lagenaria siceraria leaf extract. The synthesized AgNPs have characterized by UV-visible spectroscopy, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) techniques. AgNPs formation has screened by UV-visible spectroscopy through colour conversion due to surface plasma resonance band at 427 nm. X-ray diffraction (XRD) confirmed that the resulting AgNPs are highly crystalline and the structure is face centered cubic (fcc). FT-IR spectrum indicates the presence of different functional groups present in the biomolecules capping the nanoparticles. Further, inhibitory activity of AgNPs and leaf extract were tested against human pathogens like gram-pastive (Staphylococcus aureus, Bacillus subtilis), gram-negative (Escherichia coli and Pseudomonas aeruginosa). The results indicated that the AgNPs showed moderate inhibitory actions against human pathogens than Lagenaria siceraria leaf extract, demonstrating its antimicrobial value against pathogenic diseases


2016 ◽  
Vol 5 (6) ◽  
Author(s):  
Brajesh Kumar ◽  
Kumari Smita ◽  
Luis Cumbal

AbstractThe present report summarizes an eco-friendly approach for the biosynthesis of silver nanoparticles (AgNPs) using the leaf extract of lavender. Initially, the synthesis of AgNPs was visually observed by the appearance of a wine red color. The optical property, morphology, and structure of as-synthesized AgNPs were characterized by UV-visible spectroscopy, dynamic light scattering, transmission electron microscopy, and X-ray diffraction analyses. All characterization data revealed the formation of crystalline and spherical AgNPs (Ag/Ag


2011 ◽  
Vol 109 ◽  
pp. 174-177 ◽  
Author(s):  
Yu Li Shi ◽  
Qi Zhou ◽  
Li Yun Lv ◽  
Wang Hong

A facile method for the synthesis of silver nanoparticles (NPs) has been developed by using sodium phosphate (Na3PO4) as stabilizing agents and glucose the reducing agent, respectively. The obtained silver NPs have been characterized by X-ray diffraction (XRD), UV-visible spectroscopy (UV-vis) and transmission electron microscopy (TEM). It was found that in the presence of sodium phosphate, silver NPs with different morphologies and sizes were obtained. The formation mechanism of diverse silver NPs was studied preliminarily.


2019 ◽  
Vol 22 (6) ◽  
pp. 250-255 ◽  
Author(s):  
Sry Wahyuni ◽  
Syukri Syukri ◽  
Syukri Arief

Studies of green synthesis of nanoparticles mediated by plants extract is extensively explored and studied in recent time due to eco-friendliness, cost-effectiveness, and use a minimum amount of toxic chemicals in the process of inorganic material synthesis. In this study, the immobilization of silver nanoparticles on the surface of titanium dioxide (TiO2) was carried out using Uncaria gambier Roxb. leaf extract as a silver ion (Ag+) reducing agent. The synthesized Ag/TiO2 nanocomposite was characterized by UV-Vis spectroscopy, X-ray diffraction (XRD), and Diffuse Reflectance Spectroscopy (DRS). The formation of silver nanoparticles was confirmed through UV-Vis spectroscopic analysis, which showed a silver surface plasmon resonance (SPR) band at 426 nm. The X-ray diffraction pattern shows that Ag can inhibit the transition of the anatase into rutile phase. The presence of Ag particles in TiO2 can increase the absorption ability from an initial wavelength of 407 nm to 438 nm. Based on the results of Rhodamin B degradation, it can be seen that Ag/TiO2 has a higher photocatalytic activity than bare TiO2 with 99% percent degradation at 120 minutes of irradiation time.


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2932
Author(s):  
Simona-Nicoleta Mazurchevici ◽  
Justina Georgiana Motaș ◽  
Mariana Diaconu ◽  
Gabriela Lisa ◽  
Nicoleta Monica Lohan ◽  
...  

Due to the pressing problems of today’s world, regarding both the finding of new, environmentally friendly materials which have the potential to replace classic ones, and the need to limit the accelerated spread of bacteria in hospitals, offices and other types of spaces, many researchers have chosen to develop their work in this field. Thus, biopolymeric materials have evolved so much that they are gradually becoming able to remove fossil-based plastics from major industries, which are harmful to the environment and implicitly to human health. The biopolymer employed in the present study, Arboblend V2 Nature with silver nanoparticle content (AgNP) meets both aspects mentioned above. The main purpose of the paper is to replace several parts and products in operation which exhibit antibacterial action, preventing the colonization and proliferation of bacteria (Streptococcus pyogenes and Staphylococcus aureus, by using the submerged cultivation method), but also the possibility of degradation in different environments. The biopolymer characterization followed the thermal behavior of the samples, their structure and morphology through specific analyses, such as TGA (thermogravimetric analysis), DSC (differential scanning calorimetry), SEM (scanning electron microscopy) and XRD (X-ray diffraction). The obtained results offer the possibility of use of said biocomposite material in the medical field because of its antibacterial characteristics that have proved to be positive, and, therefore, suitable for such applications. The thermal degradation and the structure of the material highlighted the possibility of employing it in good conditions at temperatures up to 200 °C. Two types of samples were used for thermal analysis: first, in the form of granules coated with silver nanoparticles, and second, test specimen cut from the sample obtained by injection molding from the coated granules with silver nanoparticles.


2021 ◽  
Vol 33 (4) ◽  
pp. 762-766
Author(s):  
BHABANI SHANKAR PANDA ◽  
MOHAMMED ANSAR AHEMAD

The present work concerns on the synthesis of silver nanoparticles at 25 ºC using raw fruits extract of Bakul (Mimusops elengi) tree via chemical reduction route development of poly(vinyl alcohol) PVA-silver polymer nanocomposite films. The nanocomposite films were subjected to characterization by UV-visible, FTIR, X-ray diffraction, field emission scanning electron microscope (FESEM) and thermal studies. The UV-visible spectrum shows a characteristic broad absorption band observed near 465 nm suggesting presence of silver nanoparticles in polymer nanocomposites (PNCs) film. The vibrational band shift of –OH group of poly(vinyl alcohol) in the presence of nanoparticle designated the chemical interaction between –OH group of poly(vinyl alcohol) and silver nanoparticles. The FESEM study confirmed that PVA is not only acted as a capping agent, but also a cross-linking agent. X-ray diffraction study shows that the existence of AgNPs in the poly nanocomposite film and nanoaparticles are crystalline in nature. Thermal studies suggest that the enhanced thermal stability is because of the good packing of the polar crystallites in β-PVA composites as compared to the non-polar α-phase of neat poly(vinyl alcohol) (PVA).


2020 ◽  
Vol 18 (46) ◽  
pp. 1-12
Author(s):  
Jomana Maher Rakaa ◽  
Ahmed S. Obaid

In the current research, an eco-biosynthesis method for synthesizing silver nanoparticles (AgNPs) is reported using thymus vulgaris leaves (T. vulgaris) extracts. The optical and structural properties of the nanoparticles is determined using UV-visible, x-ray diffraction (XRD) and field emission scanning electron microscope (FESEM). In addition, the synthesis factors such as the temperature, the molar ratio of silver nitride and thymus vulgaris leaves extract have been investigated. The XRD pattern presented higher intensity for the five characteristic peaks of silver. FESEM images for same samples indicated that the particle size was distributed between 24-56 nm. In addition, it’s observed the formation of some aggregated Ag particles which is expected due to the precipitation effect. The mixtures were used to inhibit two kinds of bacteria which are Escherichia coli and Staphylococcus aureus by tested for antibacterial activity by agar well diffusion method.The results show the effectiveness of the synthesized AgNPs on inhabitation the growing up of the bacteria and their isolates. Where the AgNPs which synthesised with volumetric ratio of 1:10 show a higher inhibition efficiency for different concentration of the bacteria under the investigating.


Author(s):  
Subbiah Murugesan ◽  
Sundaresan Bhuvaneswari ◽  
Vajiravelu Sivamurugan

Objective: In the present system, the green synthesis of silver nanoparticles using marine the red alga Spyridia fusiformis and antibacterial activity was carried out.Methods: The seaweed extract was used for the synthesis of AgNPs at room temperature. The silver nanoparticles were characterized by using UV–Visible spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscope and X-ray diffraction (XRD) techniques. The antibacterial activity of biosynthesized silver nanoparticles was carried out by disc diffusion method against pathogenic bacteria.Results: The UV-visible spectroscopy revealed surface plasmon resonance at 450 nm. The FT-IR measurements showed the possible functional groups responsible for the formation of nanoparticles. The X-ray diffraction analysis showed that the particles were crystalline in nature. TEM micrograph has shown the formation of silver nanoparticles with the size in the range of 5–50 nm. The silver nanoparticles synthesized from the S. fusiformis showed higher activity and proved their efficacy in controlling the pathogenic bacterial strains. The nanoparticles showed highest inhibition activity on K. pneumaniae and S. aureus up to 26 and 24±0.01 mm at 100 μg/ml of nanoparticles.Conclusion: The synthesised AgNPs have shown the best antibacterial activity against human pathogens E. coli, K. pneumoniae, S. aureus and P. aeruginosa. The above eco-friendly AgNPs synthesis procedure could be a viable solution for industrial applications in the future and therapeutic needs.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Ravishankar Bhat ◽  
Raghunandan Deshpande ◽  
Sharanabasava V. Ganachari ◽  
Do Sung Huh ◽  
A. Venkataraman

This is a report on photo-irradiated extracellular synthesis of silver nanoparticles using the aqueous extract of edible oyster mushroom (Pleurotus florida) as a reducing agent. The appearance, size, and shape of the silver nanoparticles are understood by UV-visible spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. The X-ray diffraction studies, energy dispersive X-ray analysis indicate that particles are crystalline in nature. Fourier transform infrared spectroscopy analysis revealed that the nanoparticles are covered with biomoieties on their surface. As can be seen from our studies, the biofunctionalized silver nanoparticles thus produced have shown admirable antimicrobial effects, and the synthetic procedure involved is eco-friendly and simple, and hence high range production of the same can be considered for using them in many pharmaceutical applications.


Sign in / Sign up

Export Citation Format

Share Document