Oridonin Improves the Sensitivity of Multiple Myeloma Cells to Bortezomib through the PTEN/PI3K/Akt Pathway

2020 ◽  
Vol 18 (3) ◽  
pp. 292-296
Author(s):  
Wu Hong ◽  
Zhu Guihua ◽  
Su Yizhou

Bortezomib is an effective drug for the treatment of multiple myelomas. However, its long-term effectiveness is limited by the development of drug resistance. Oridonin, a natural diterpenoid purified from Rabdosia rubescens, has the potential to diminish resistance to bortezomib. To examine the mechanism underlying the diminution of bortezomib-resistance in multiple myeloma by oridonin, we have created a bortezomib-resistant cell line of multiple myeloma cells (RPMI-8226R). Using MTT assay, apoptosis assays and western blot analysis, we evaluated and compared the effects of oridonin on the cell viability, proliferation, apoptosis, and protein expression levels in bortezomib-resistant (RPMI-8226R) and bortezomib-sensitive (RPMI-8226) myeloma cells. The results show that oridonin sensitized multiple myeloma cells leading to increased apoptosis rate via regulating the PTEN/PI3K/AKT pathway. Furthermore, oridonin activated the expression of PTEN, which is a negative regulator of the PI3K/AKT pathway, while inhibitinged the expression of p-Akt. These results demonstrated that oridonin might be a useful natural compound in bortezomib-resistant multiple myeloma treatment.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3446-3446 ◽  
Author(s):  
Ebenezer David ◽  
Rajni Sinha ◽  
Jonathan L. Kaufman ◽  
Sagar Lonial

Abstract Background: Perifosine is an oral AKT inhibitor which exerts a marked cytotoxic effect on human tumor cell lines. It is currently being tested in several phase II trials for the treatment of major cancers including multiple myeloma. While the proposed mechanism of action relates to downregulation of AKT expression, overepxression of constitutively active AKT does not abrogate perifosine induced cell death suggesting alternative mechanisms. Hypothesis: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL, Apo2 ligand) effectively kills multiple myeloma cells in vitro after binding to their membrane specific receptors TRAIL-R1 (DR4) and TRAIL-R2 (DR5). It is our hypothesis that DR4/DR5 upregulation occurs in response to perifosine treatment, and thus may be additive with exogenous TRAIL. Materials and Methods: TRAIL-sensitive myeloma cell lines (MM.1S, RPMI8226, MM.1R) and TRAIL- resistant myeloma cell lines (U266) were used in this study. Apoptosis was assessed by annexin-V binding assay using flow-cytometry and cell death was assessed by MTT assay. Recombinant human TRAIL, chimeras of DR4 and DR5 were obtained from R&D systems. Results: Perifosine alone(5μM and 10μM) induced apoptosis of MM.1S in 40% and 50% of the treated cells as measured by flow cytometry, that increased to 81% and 91% when 50ng/ml of TRAIL was added to 5μM and 10 μM of perifosine. TRAIL alone induced only nominal apoptosis. Use of the TRAIL resistant U266 cell line showed only minimal apoptosis in response to perifosine, TRAIL, or the combination of both agents. Perifosine also induced DR4 and DR5 expression in less than 2hrs upon the Perifosine exposure in MM.1S as shown by RT-PCR. The combination of perifosine and TRAIL was not sequence specific. Furthermore, we observed that the enhanced apoptosis induced by perifosine and TRAIL in combination was almost or partially blocked by the administration of the DR4 and DR5 blocking antibodies only in the case of MM.1S, MM.1R, RPMI8226 TRAIL sensitive cells lines. Apoptosis was completely blocked in the case of U266 TRAIL resistant cell line when the chimera antibodies were used with perifosine alone or in combination with TRAIL. Conclusion and future directions: Perifosine, an agent proposed to function via inhibition of p-AKT and PDK-1, may have other effects on cell cycle regulation and it pro-apoptotic effects may be partially related to the TRAIL pathway. Our data suggests that an additional mechanism of action relates to the effect perifosine has on DR4 and DR5 expression thus directly effecting apoptosis via the TRAIL mediated effects. The limited response the trail resistant cell line U266 cells suggest that the TRAIL resistant myeloma cells have less DR4 or DR5 surface receptors as compared to the TRAIL sensitive cell lines, MM.1S, MM.1R, and RPMI8226 further validating this alternative mechanism. Further experiments such as inhibition of DR4, DR5, and FADD by small interfering RNAs, RT-PCR, the response in primary myeloma cells and also using more TRAIL resistant cell lines to support our preliminary observations are currently in progress.


2020 ◽  
Vol 18 (3) ◽  
pp. 241-246
Author(s):  
Yu Dan ◽  
Wan Sheng ◽  
Hu Lili

This study aimed to investigate the mechanism of betulinic acid on multiple myeloma cell resistance to bortezomib. To this end, the bortezomib-resistant RPMI-8226-R cells were generated by prolonged treatment of RPMI-8226 cells with increasing concentrations of bortezomib. Based on the measurements of cell viability and colony number, RPMI-8226-R cells exhibited enhanced resistance to bortezomib than RPMI-8226 cells. Treatment with betulinic acid resulted in increased sensitivity of RPMI-8226-R to bortezomib. When RPMI-8226-R cells were co-treated with bortezomib and betulinic acid, there was an increase in apoptosis rate, cleaved caspase-3, cleaved caspase-9 expression and the decrease in p-AKT/AKT and p-mTOR/mTOR levels. These results suggest that betulinic acid enhances the sensitivity of RPMI-8226-R cells to bortezomib by inhibiting the activation of the AKT/mTOR pathway in bortezomib-resistant multiple myeloma cells.


2016 ◽  
Vol 103 (3) ◽  
pp. 261-267 ◽  
Author(s):  
Xiaoxuan Xu ◽  
Junru Liu ◽  
Beihui Huang ◽  
Meilan Chen ◽  
Shiwen Yuan ◽  
...  

Purpose Proteasome inhibition with bortezomib eliminates multiple myeloma (MM) cells by partly disrupting unfolded protein response (UPR). However, the development of drug resistance limits its utility and resistance mechanism remains controversial. We aimed to investigate the role of IRE1α/Xbp-1 mediated branch of the UPR in bortezomib resistance. Methods The expression level of Xbp-1s was measured in 4 MM cell lines and correlated with sensitivity to bortezomib. LP1 and MY5 cells with different Xbp-1s level were treated with bortezomib; then pivotal UPR regulators were compared by immunoblotting. RPMI 8226 cells were transfected with plasmid pEX4-Xbp-1s and exposed to bortezomib; then apoptosis was determined by immunoblotting and flow cytometry. Bortezomib-resistant myeloma cells JJN3.BR were developed and the effect on UPR signaling pathway was determined. Results By analyzing 4 MM cell lines, we found little correlation between Xbp-1s basic level and bortezomib sensitivity. Bortezomib induced endoplasmic reticulum stress-initiated apoptosis via inhibiting IRE1α/Xbp-1 pathway regardless of Xbp-1s basic level. Exogenous Xbp-1s reduced cellular sensitivity to bortezomib, suggesting the change of Xbp-1s expression, not its basic level, is a potential marker of response to bortezomib in MM cells. Furthermore, sustained activation of IRE1α/Xbp-1 signaling pathway in JJN3.BR cells was identified. Conclusions Our data indicate that reduced response of IRE1α/Xbp-1 signaling pathway to bortezomib may contribute to drug resistance in myeloma cells.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4922-4922 ◽  
Author(s):  
Vito J. Palombella ◽  
Emmanuel Normant ◽  
Janid Ali ◽  
John Barrett ◽  
Michael Foley ◽  
...  

Abstract IPI-504 is a novel inhibitor of Hsp90 based on the geldanamycin pharmacophore. When placed in rat, monkey, and human blood, IPI-504 rapidly converts to the known and well-studied compound 17-allylamino-17-demethoxy-geldanamycin (17-AAG). 17-AAG is the subject of multiple clinical trials for the treatment of hematologic and solid tumors. However, 17-AAG suffers from poor aqueous solubility necessitating the use of sub-optimal formulations to deliver this agent to patients. IPI-504 is over 1000-fold more soluble than 17-AAG in aqueous solution. In vitro, both 17-AAG and IPI-504 bind tightly to, and selectively inhibit Hsp90 derived from cancer cells. The cytotoxic effect of IPI-504, as well as its ability to stimulate the degradation of Hsp90 client proteins and increase the intracellular levels Hsp70, were monitored in two human multiple myeloma cells lines (RPMI-8226 and MM1.S). The effects of IPI-504 were compared to 17-AAG. We demonstrate that the actions of IPI-504 are bioequivalent to 17-AAG and that both compounds induce apoptosis in these cells and stimulate the degradation of HER2 and c-Raf. In addition, both agents stimulate Hsp70 protein levels. In all cases the EC50s are virtually the same for both molecules (~200–400 nM). Furthermore, IPI-504 inhibits the secretion of immunoglobulin light chain from the RPMI-8226 multiple myeloma cells (EC50 ~300 nM). Importantly, IPI-504 is active in tumor xenograft models of multiple myeloma. The data indicate that active metabolites of IPI-504 accumulate in these xenografts long after these metabolites are cleared from the plasma compartment, suggesting that they preferentially accumulate in tumor cells based on their increased affinity to Hsp90 derived from tumor cells. In conclusion, we have developed IPI-504 as a novel, potent inhibitor of Hsp90 with greatly increased solubility over 17-AAG, and that IPI-504 is an active anti-tumor agent in vitro and in vivo.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5050-5050
Author(s):  
Asher Alban Chanan-Khan ◽  
Noreen Ersing ◽  
Paula Pera ◽  
Ralph Bernaki ◽  
Lionel Coignet ◽  
...  

Abstract Introduction: Bortezomib (B) is the first in class proteasome inhibitor that received FDA approval for the treatment of MM patients with relapsed or refractory disease. Despite impressive clinical activity all patients develop resistance to B. The underlying mechanism of resistance to B remains undetermined. Mechanisms to overcome B resistance or development of new therapeutic agent(s) with activity in context of B resistance are limited due to unavailability of established preclinical B resistant MM models. To overcome this challenge we developed a B resistant HMCL. Methods: we chronically exposed the OPM-2 HMCL to sub-lethal doses of B. Surviving cells were harvested, re-cultured and dose of B incrementally increased over prolong period of time. The resulting resistant cells were further characterized using array Comparative Genomic Hybridization (aCGH), spectral karyotyping (SKY) and gene expression profiling. Results: After several passages we were able to induce B resistance in this HMCL. Final clone (OPM-2BR) demonstrate resistance to 2 × IC50 dose of B. While SKY and aCGH analysis demonstrated significant differences when compared with parent OPM-2WT (wild type) HMCL, gene expression profiling of the resistant and parental lines demonstrated significant upregulation in the expression of a number of ATP-binding cassette transporters. For example, the breast cancer resistance protein (ABCG2) is upregulated 4-fold in the resistant cell line compared to the parental cell line. This data suggests that drug efflux mediated by drug transporters represents one potential mechanism of resistance to B. Conclusion: Chronic in vitro B exposure results in induced resistance in HMCL-OPM-2BR. Resistant cell line demonstrates cytogenetic variability when compared to the parent cell line. Induction of resistance is stable and provides an important preclinical tool to investigate mechanism(s) of B resistance as well as new drug development for B resistant myeloma patients. Detailed analysis of this cell lines including therapeutic interventions investigating resistance reversal will be presented at the meeting.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2635-2635
Author(s):  
Sarah A. Holstein ◽  
Huaxiang Tong ◽  
Raymond J. Hohl

Abstract Introduction: The isoprenoid biosynthetic pathway (IBP) is responsible for the production of key sterol and nonsterol species, including farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) which serve as substrates for protein isoprenylation reactions. Several agents known to target the IBP have been observed to have cytotoxic effects in multiple myeloma cells. Thalidomide (Thal) has emerged as an effective agent for treating multiple myeloma. While Thal has been noted to have a variety of direct and indirect effects on myeloma cells, the precise mechanism of action remains unknown. Aim: We examined interactions between inhibitors of the IBP and Thal in multiple myeloma cells. The mechanisms underlying the observed differential sensitivity to these agents were explored. Methods: Studies were performed in three human multiple myeloma cell lines (RPMI-8226, U266, H929). Cytotoxicity was assessed via MTT assays, while apoptosis induction was determined by Annexin V staining and evaluation of PARP cleavage. Western blot analysis was used to evaluate inhibition of protein isoprenylation. Intracellular FPP and GGPP levels were measured via enzymatic coupling to fluorescently-tagged peptides, HPLC fractionation and fluorescence detection. Pharmacologic manipulation of the IBP was achieved with the following agents: lovastatin (Lov) as an HMG-CoA reductase inhibitor, zoledronic acid (ZA) as a FPP synthase inhibitor, digeranyl bisphosphonate (DGBP) as a GGPP synthase inhibitor, FTI-277 as a farnesyl transferase inhibitor (FTI), and GGTI-286 as a geranylgeranyl transferase I inhibitor (GGTI). Results: Addition of Thal to Lov (at both 24 & 48h), zoledronic acid (at 48h), or DGBP (at 24 & 48h) in RPMI-8266 cells results in marked enhancement in cytotoxicity. Isobologram analysis could not be performed as Thal by itself does induce cytotoxicity in MTT assays. Although Lov induces cytotoxicity in a concentration- and time-dependent manner in the U266 and H929 cells, the addition of Thal did not result in increased cytotoxicity. Neither ZA nor DGBP induced cytotoxicity in the U266 cell line, while the H929 cell line showed effects only at 48 hours. Addition of Thal to FTI or GGTI did not result in enhanced cytotoxicity in tested cell lines. Annexin V experiments confirmed enhanced induction of apoptosis in RPMI-8226 cells incubated with the combination of Thal/Lov or Thal/DGBP. Add-back experiments revealed that the enhanced cytotoxicity/induction of apoptosis observed with the addition of Thal could be prevented with the addition of mevalonate or GGPP in Lov-treated cells or GGPP in DGBP-treated cells. PARP cleavage was demonstrated in RPMI-8226 and H929 cells treated with Lov or DGBP (with or without Thal) and in U266 cells treated with Lov. As expected, Lov resulted in the accumulation of unmodified forms of proteins normally farnesylated (Ras) and geranylgeranylated (Rap1a and Rab6) in these cells. Interestingly however, while DGBP led to accumulation of unmodified Rap1a and Rab6 in RPMI-8226 and H929 cells, no effect was seen in the U266 line. Examination of intracellular levels of FPP and GGPP revealed that the U266 line has markedly larger pools of FPP (8.5-fold) and GGPP (2.7-fold) compared to RPMI-8226 and that treatment with DGBP only partially depletes U266 cells of GGPP. Conclusions: These studies demonstrate an interaction between thalidomide and IBP inhibitors in multiple myeloma cells. These effects appear dependent on depletion of GGPP. Since treatment with a geranylgeranyl transferase-I inhibitor does not produce similar results, this suggests that substrates of geranylgeranyl transferase-II, such as the Rab proteins, may play critical roles in myeloma pathophysiology. The finding that intracellular levels of FPP and GGPP vary markedly amongst cell lines explains differential sensitivity of these cells to pharmacologic manipulation of the IBP and may also influence sensitivity to chemotherapeutic agents. Further studies will determine the extent to which isoprenoid pool sizes vary in primary samples and may ultimately allow for the identification of multiple myeloma patients who would benefit from the addition of an IBP inhibitor to their treatment plan. Figure Figure


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 113-113 ◽  
Author(s):  
Chad C. Bjorklund ◽  
Deborah J. Kuhn ◽  
Jairo A. Matthews ◽  
Michael Wang ◽  
Veerabhadran Baladandayuthapani ◽  
...  

Abstract Abstract 113 Background: Novel drugs such as the immunomodulatory agent lenalidomide have revolutionized the treatment of multiple myeloma, as evidenced by an increasing overall survival for patients with both newly-diagnosed, and relapsed and/or refractory disease. Despite these improvements, myeloma remains incurable, and is still characterized by a trend for increasing chemoresistance at relapse, with a decreasing duration of benefit from each successive line of therapy. By understanding the mechanisms responsible for the emergence of drug resistance, which have so far not been well characterized in the case of lenalidomide, it may be possible to rationally design novel regimens that could either overcome this resistance, or possibly prevent its emergence altogether. Methods: To improve our understanding of the mechanisms responsible for lenalidomide resistance, we developed cell line models of interleukin (IL)-6-dependent (ANBL-6 and KAS-6/1) and –independent (U266 and MM1.S) lenalidomide-resistant multiple myeloma cells. Starting at a concentration that was 1/10 of the IC50 for lenalidomide's anti-proliferative effects in drug-naïve cells, increasing drug concentrations were used until all the cell lines could proliferate and maintain cell membrane integrity in the presence of 10 μM lenalidomide. These cell lines were then used as an in vitro model of lenalidomide-specific drug resistance, and subjected to further characterization, including with gene expression profiling. Results: Resistance to lenalidomide was evidenced by a dramatic, 100-1000-fold increase in the IC50 values of these myeloma cells. In the case of ANBL-6 cells, for example, drug-naïve cells showed an IC50 of 0.14 μM using tetrazolium dye-based viability assays, but this increased to >100 μM in the drug-resistant cells, as was the case in U266 and MM1.S cells. This resistance was a stable phenotype, since removal of lenalidomide for seven to ninety days from cell culture conditions did not re-sensitize them when 10 μM lenalidomide was reintroduced. Gene expression profiling followed by pathway analysis to examine changes at the transcript level between wild-type parental and lenalidomide-resistant cell lines identified the Wnt/β-catenin pathway as the most altered across all cell lines. Increased expression was seen in several members of the low-density-lipoprotein receptor related protein family, including LRP1 and 5; members of the wingless-type MMTV integrations site family, including WNT3 and 4; β-catenin; and downstream Wnt/β-catenin targets such as CD44. Similar changes were detected in primary samples from a patient who developed clinically lenalidomide-refractory disease. Reporter assays revealed an up to 5-fold increase in LEF/TCF-dependent transcription both in drug-naïve cells acutely exposed to lenalidomide, and in their chronically exposed, lenalidomide-resistant clones. Western blotting and flow cytometry confirmed that these lenalidomide-resistant cells had increased expression by 2-20 fold of β-catenin and CD44, as well as other LEF/TCF targets, including Cyclin D1 and c-Myc. Comparable changes occurred after lenalidomide exposure in myeloma cells grown in the context of bone marrow stroma. Notably, lenalidomide-resistant cells showed decreased expression of casein kinase 1 and increased phosphorylation of glycogen synthase kinase 3 at Ser21/9, both of which would reduce the phosphorylation of β-catenin needed for its later proteasome-mediated degradation. Stimulation of the Wnt/β-catenin pathway with recombinant human Wnt3a resulted in resistance to lenalidomide in wild-type, drug-naïve cells, as evidenced by a 10-fold increase in the IC50. Conversely, exposure of lenalidomide-resistant cell lines to quercetin, a known antagonist of the β-catenin/TCF interaction, induced a partial re-sensitization to lenalidomide. Conclusions: These data support the hypothesis that activation of the Wnt/β-catenin pathway represents a mechanism of both acute and chronic resistance to the anti-proliferative effects of lenalidomide in multiple myeloma. Moreover, they support the development of strategies aimed at suppressing Wnt/β-catenin activity to resensitize multiple myeloma to the effects of this immunomodulatory agent in vivo. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1853-1853 ◽  
Author(s):  
Shirong Li ◽  
MeiHua Jin ◽  
Ailing Liu ◽  
Markus Y. Mapara ◽  
Suzanne Lentzsch

Abstract Abstract 1853 Methods: The translation initiation factor eIF4E is central to protein synthesis in general, and overexpression and/or activation of eIF4E is associated with a malignant phenotype by regulating oncogenic protein translation. Several previous publications indicate that aberrant control of protein synthesis contributes to lymphoma genesis but the exact role of protein translation in multiple myeloma (MM) is less clear. Therefore, understanding the mechanisms that control protein synthesis is an emerging new research area in MM with significant potential for developing innovative therapies. The goal of this study was to determine the role and regulation of eIF4E, as well as the effects of protein translation controlling drugs in MM. Results: By western blot analysis as well as RT-PCR we found that eIF4E protein and mRNA levels are significantly elevated (up to 20 fold) in MM cell lines (H929, RPMI-8226, MM.1S and OPM2) and primary myeloma cells compared to normal plasma cells. Silencing of eIF4E gene expression in RPMI-8226 MM cells by a stable and inducible shRNA system significantly decreased viability of myeloma cells (by ∼ 43%) but not of HEK 293 suggesting a higher dependency of MM cells to protein translation. Next we evaluated different drugs including pomalidomide, rapamycin, pp242, 4EGI-1 and ribavirin, that are known to inhibit protein synthesis for their effects on protein translation in MM. By m7GTP pull down assays we evaluated the effects of the different drugs on eIF4E expression and activity. Rapamycin blocked the phosphorylation of 4EBP1 and eIF4E release, and subsequently inhibited eIF4G binding. The compound 4EGI-1 decreased the interaction between eIF4E and eIF4G. Pomalidomide decreased eIF4E protein expression. All drugs inhibited MM cell DNA synthesis measured by 3H-Thymidine incorporation. Treatment with pomalidomide (10uM), rapamycin (40nM), pp242 (10uM), 4EGI1 (50uM) or ribavirin (50uM) for 48h significantly decreased (p<0.05) proliferation by 43–62% indicating that drugs controlling protein translation inhibit MM growth. We also found that all drugs decreased expression of eIF4E dependent targets such as cyclin D1 and c-myc. Conclusion: Here we show that eIF4E, a key player in translational control, is highly expressed in MM cells and critical for MM growth and survival. Therefore our study helps to understand the function and regulatory mechanism of eIF4E in MM. Further the evaluation of drugs targeting protein translation provides the basis for the optimization of current MM treatment or to open up new strategies such as targeting protein translation in future MM therapy. Disclosures: Lentzsch: Celgene Corp: Consultancy, Research Funding; Onyx: Consultancy; Genzyme: Consultancy; prIME Oncology: Honoraria; Imedex: Honoraria; Clinical Care Options: Honoraria.


Sign in / Sign up

Export Citation Format

Share Document