scholarly journals Experimental and Numerical Study on the Behavior of Dyneema� HB26 Composite in Compression

2019 ◽  
Vol 57 (2) ◽  
pp. 113-122
Author(s):  
Florina Bucur ◽  
Adrian Rotariu ◽  
Liviu Matache ◽  
Florin Baciu ◽  
Gabriel Jiga ◽  
...  

In the last decades as the need for high economical and technical efficiency items/applications became acute, lightweight, high strength and low-cost materials development and investigation emerged as a logical and promising course of action. With high potential for both military and civil sector, the ultra-high molecular weight polyethylene (UHMWPE) is considered a new class of material. Among this class, the Dyneema� HB26 composite is of most interest for the present study. The present paper focuses on the static and dynamic investigation of the HB26 mechanical behavior experiencing an out of plane compressive load. For experimental purposes, using a 15 mm thickness panel two types of samples (cylindrical and cubic samples) were processed. For compression test Instron Testing Machine and the Split Hopkinson Pressure Bar (SHPB) were used. The experimental tests were then compared against the numerical findings highlighting a good consistency.

2013 ◽  
Vol 535-536 ◽  
pp. 518-521 ◽  
Author(s):  
Muhammad A. Kariem ◽  
Dong Ruan ◽  
John H. Beynon

It is known that the split Hopkinson pressure bar (SHPB) technique has not been standardised yet. The standardised SHPB technique is necessary in order to provide guidelines for determining the intrinsic material properties. This paper examines whether consistent results can be achieved from various sets of SHPBs. Finite element analysis has been conducted using ANSYS/LS-DYNA. Numerical simulation of the round-robin tests was conducted to study the consistency of results for OFHC copper, which were obtained from three sets of apparatus, namely: 12.7 mm diameter SHPB made from the AISI 4140 steel, 13 mm diameter SHPB made from the high strength steel (HSS) and 14.5 mm diameter SHPB made from maraging steel 350 (AISI 18Ni). The current study shows that consistent flow stresses (within an acceptable error of 2.5%) were obtained from those three sets of SHPBs, which indicates the possibility of SHPB standardisation in the future.


2013 ◽  
Vol 61 (2) ◽  
pp. 459-466 ◽  
Author(s):  
P. Baranowski ◽  
J. Malachowski ◽  
R. Gieleta ◽  
K. Damaziak ◽  
L. Mazurkiewicz ◽  
...  

Abstract High strain rate experimental tests are essential in a development process of materials under strongly dynamic conditions. For such a dynamic loading the Split Hopkinson Pressure Bar (SHPB) has been widely used to investigate dynamic behaviour of various materials. It was found that for different materials various shapes of a generated wave are desired. This paper presents a parametric study of Split Hopkinson Pressure Bar in order to find striker’s design variables, which influence the pulse peak shape in the incident bar. With experimental data given it was possible to verify the developed numerical model, which was used for presented investigations. Dynamic numerical simulations were performed using explicit LS-Dyna code with a quasi-optimization process carried out using LS-Opt software in order to find striker’s design variables, which influence the pulse peak shape.


This paper describes a modification of the split Hopkinson pressure bar, to allow compression testing of high strength metals at a strain rate of up to about 10 5 s –1 . All dimensions are minimized to reduce effects of dispersion and inertia, with specimens of the order of 1 mm diameter. Strain is calculated from the stress record and calibrated with high-speed photography. Particular attention has been paid to the accuracy of the technique, and errors arising from nonlinearity in the instrumentation, dispersion, frictional restraint and inertia have all been quantitatively assessed. Stress–strain results are presented of Ti 6A14V alloy, a high strength tungsten alloy, and pure copper.


2008 ◽  
Vol 368-372 ◽  
pp. 713-716 ◽  
Author(s):  
Jiang Tao Zhang ◽  
Li Sheng Liu ◽  
Peng Cheng Zhai ◽  
Qing Jie Zhang

The dynamic compressive behavior of Al2O3 (10% vol.) / TiB2 ceramic composite had been tested by using a split Hopkinson pressure bar in this paper. The results show that the main failure modes of the ceramic composite include crushed failure and split fracture along the loading direction. The former is the typical compressive failure of brittle materials. The later is tensile failure along the flaws produced during the composite manufacturing. The numerical simulation was also used to study the effect of the diameter/length ratio of the samples on the experimental results. The effect of the deformation in the bars’ ends, which contacted with the samples, was also studied in the numerical models.


2006 ◽  
Vol 326-328 ◽  
pp. 1573-1576
Author(s):  
Dong Feng Cao ◽  
Li Sheng Liu ◽  
Jiang Tao Zhang

Dynamic response and fracture of high strength boride/alumina ceramic composite were investigated by split Hopkinson pressure bar (SHPB) experiment in this paper. The compressive stress–strain curves and dynamic compression strength of the composites were tested. The surface’s microstructure of fractured composites were examined by using scanning electron microscope (SEM) to investigate the fracture mechanism. The results show that boride/alumina has high dynamic compressive strength and high Young’s modulus. The main fracture mode of the material is the fracture of the ceramic grains. The micro-voids and flaws, generated during the sintering and manufacturing of material and mechanical process of specimen, decrease the strength of the material because they provide the source of crack expansion when the material undergoes the dynamic loadings.


2018 ◽  
Vol 183 ◽  
pp. 01053
Author(s):  
Xueyang Li ◽  
Christian C. Roth ◽  
Dirk Mohr

Plasticity and fracture experiments are carried out on flat smooth and notched tensile specimens extracted from DP800 steel sheets. A split Hopkinson pressure bar testing system equipped with a load inversion device is utilized to reach high strain rates. Temperature dependent experiments ranging from 20°C to 300°C are performed at quasi-static strain rates. The material exposes a monotonic strain hardening behaviour with a non-monotonic temperature dependency. The rate-independent material behaviour at room-temperature is described with a non-associated Hill’48 plasticity model and an Swift-Voce strain hardening. A machine learning based model is used multiplicatively to capture the rate and temperature responses. A good agreement between measured and simulated force-displacement curves as well as local surface is obtained. The loading paths to fracture are then extracted to facilitate further development of a temperature dependent fracture initiation model.


2018 ◽  
Vol 183 ◽  
pp. 01058 ◽  
Author(s):  
Philip Church ◽  
Mark Reynolds ◽  
Peter Gould ◽  
Robin Oakley ◽  
Nigel Harrison ◽  
...  

Additively Manufactured (AM) materials have great potential for producing graded materials, embedded structures and near net complex shapes. AM maraging steel properties have been compared with wrought maraging steel. The comparison featured interrupted tensile tests over a range of temperatures and strain rates. In addition a specially designed Tensile Split Hopkinson Pressure Bar (TSHPB) has been built to test very high strength metals at high strain rates. The results showed that the AM maraging steel was much more ductile than expected and exhibited significant necking under all conditions tested. All the samples exhibited ductile fracture. Although not as ductile as the wrought material, the AM material could be cost effective through economies of scale for complex components. The microstructure contained inclusions which derived from either the powder or the AM process and thus there is significant potential to improve these materials further. A modified Armstrong-Zerilli model was also constructed for these materials and shown to predict the raw experimental data within experimental error using DYNA3D simulations.


2019 ◽  
Vol 9 (14) ◽  
pp. 2830 ◽  
Author(s):  
Zhihong Xie ◽  
Zhijian Duan ◽  
Yongchang Guo ◽  
Xiang Li ◽  
Junjie Zeng

Fiber-reinforced polymer (FRP) has become increasingly popular in repairing existing steel-reinforced concrete (RC) members or constructing new structures. Although the quasi-static axial compression performance of FRP-confined concrete (FCC) has been comprehensively studied, its dynamic compression performance is not well understood, especially the dynamic compressive behavior of FRP-confined high-strength concrete (FCHC). This paper presents an experimental program that consists of quasi-static compression tests and Split-Hopkinson Pressure Bar (SHPB) impact tests on FRP-confined high-strength concrete. The effects of the FRP types, FRP confinement stiffness, and strain rate on the impact resistance of FCHC are carefully studied. The experimental results show that the strain rate effect is evident for FRP-confined high-strength concrete and the existence of the FRP greatly improves the dynamic compressive strength of high-strength concrete. An existing strength model is modified for impact strength of FCHC and the predicted results are compared with the test results. The results and discussions show that the proposed model is accurate and superior to the existing models.


Sign in / Sign up

Export Citation Format

Share Document