scholarly journals Biocompatible Titanium Alloys used in Medical Applications

2019 ◽  
Vol 70 (4) ◽  
pp. 1302-1306 ◽  
Author(s):  
Madalina Simona Baltatu ◽  
Catalin Andrei Tugui ◽  
Manuela Cristina Perju ◽  
Marcelin Benchea ◽  
Mihaela Claudia Spataru ◽  
...  

At global level, there is a continuing concern for the research and development of alloys for medical and biomedical applications. Metallic biomaterials are used in various applications of the most important medical fields like orthopedic, dental and cardiovascular. The main metallic biomaterials used in human body are stainless steels, Co-based alloys and Ti-based alloys. Titanium and its alloys are of greater interest in medical applications because they exhibit characteristics required for implant materials, namely, good mechanical properties (less elasticity modulus than stainless steel or CoCr alloys, fatigue strength, high corrosion resistance), high biocompatibility. The aim of this review is to describe and compare the main characteristics (mechanical properties, corrosion resistance and biocompatibility) for latest research of nontoxic Ti alloys biomaterials used for medical field.

2015 ◽  
Vol 1128 ◽  
pp. 105-111 ◽  
Author(s):  
Mădălina Simona Bălţatu ◽  
Petrică Vizureanu ◽  
Mircea Horia Tierean ◽  
Mirabela Georgiana Minciună ◽  
Dragoş Cristian Achiţei

Metallic biomaterials are used in various applications of the most important medical fields (orthopedic, dental and cardiovascular). The main metallic biomaterials are stainless steels, Co-based alloys and Ti-based alloys. Recently, titanium alloys are getting much attention for biomaterials because these types of materials have very good mechanical properties, good corrosion resistance and an excellent biocompatibility. The paper contains important information about titanium alloys used for biomedical applications, which are considered the most widely. It is very important to understand the microstructural evolution and property-microstructure relationship in implant alloys. In the present paper, authors present a short literature review on general aspects of promising biocompatible binary Ti-Mo alloys compared with CoCr and stainless steel alloys, as an alternative of the known metallic biomaterials. This alloys show superior mechanical compatibility and very good biocompatibility. The aim of this review is to highlight the mechanical properties for several types of biomaterials, their application in medical field, especially the Ti-Mo group.


2017 ◽  
Vol 62 (2) ◽  
pp. 663-666
Author(s):  
G. Adamek ◽  
J. Jakubowicz ◽  
M. Dewidar

AbstractThe paper presents the preparation of Ti-(1-30wt.%)Y2O3composites using the mechanical alloying process. Ti based materials are the best metallic biomaterials because of their excellent properties: biocompatibility, low Young moduli and high corrosion resistance. Pure Ti and Y2O3powders were alloyed under argon atmosphere in shaker type mill (Spex 8000) followed by pressing and sintering.The ultra-low grain size structure improves the mechanical properties and hardness of the new materials in comparison to microcrystalline Ti-based sinters. However, because of the porosity of approx. 20-30%, a decrease in the Young modulus is observed. Moreover, the new composites show good tendency towards covering by Ca-P compounds during soaking in SBF.


2021 ◽  
Vol 21 (4) ◽  
pp. 320-328
Author(s):  
Haydar H.J. Jamal Al Deen

Metals are used extensively in biomedical applications due to their mechanical strength, corrosion resistance, and biocompatibility. There are many types of metals and alloys used in this application ( stainless steel, Ti and Ti alloys, CoCr, dental amalgam, etc). This review focus on CoCr alloys which have excellent corrosion resistance and mechanical properties which make them the best choice for many types of surgical implants. There are many alloying elements used to improve the properties of CoCr alloy such as ( Zr, In, Ta, etc ) has been reviewed.


2019 ◽  
Vol 8 (4) ◽  
pp. 12168-12172

Over the past centuries there is a considerable development in the medical field. There is a lot of development in surgery and prosthetic fields. For this purpose a lot of materials are used as implants for replacing them in place of damaged parts. These materials are called as bio materials. It has been observed that one of the most important properties governing the suitability of the material to be a bio implant is ‘wear resistance’ ‘Corrosion Resistance’. This paper explains about mechanical properties on Magnesium hybrid composites for bio-medical applications.


2011 ◽  
Vol 465 ◽  
pp. 471-474 ◽  
Author(s):  
Dalibor Vojtěch ◽  
Alena Michalcová

Nearly equi-atomic Ni-Ti alloys (nitinol) show shape memory behavior, superelasticity, high strength, excellent corrosion resistance and biocompatibility, making them of interest for various biomedical applications. In processing, they experience various heat treating steps. The present work illustrates influence of a short-time heat treatments (several minutes) at moderate temperatures (around 500°C) on transformation temperature Af and on mechanical properties.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jung Eun Park ◽  
Il Song Park ◽  
Tae Sung Bae ◽  
Min Ho Lee

Titanium (Ti) is often used as an orthopedic and dental implant material due to its better mechanical properties, corrosion resistance, and excellent biocompatibility. Formation of TiO2nanotubes (TiO2NTs) on titanium is an interesting surface modification to achieve controlled drug delivery and to promote cell growth. Carbon nanotubes (CNTs) possess excellent chemical durability and mechanical strength. The use of CNTs in biomedical applications such as scaffolds has received considerable attention in recent years. The present study aims to modify the surface of titanium by anodizing to form TiO2NTs and subsequently deposit CNTs over it by electrophoretic deposition (EPD). Characteristic, biocompatibility, and apatite forming ability of the surface modified samples were evaluated. The results of the study reveal that CNTs coating on TiO2nanotubes help improve the biological activity and this type of surface modification is highly suitable for biomedical applications.


2017 ◽  
Vol 899 ◽  
pp. 295-298
Author(s):  
Sinara Borborema Gabriel ◽  
Gabriel Feliciano Santos ◽  
Artur da Silva Siqueira de Novais ◽  
Raphaela Paciello de Souza Lamarca ◽  
Carlos Angelo Nunes ◽  
...  

Recent studies have focused on the development of metastable beta-type Ti alloys with non-toxic elements such as Nb, Ta, Mo and Zr for biomedical applications. These alloys present low modulus, good mechanical compatibility and good corrosion resistance. Moreover, the processing variables can be controlled to produce microstructures with specific properties. In this regard, the objective of this work was to analyze the electrochemical behavior of Ti-13Nb-12Mo alloy hot forged and aged at 500 °C/24 h. The microstructure was analyzed by transmission electron microscopy. The corrosion tests were carried out under a NaCl solution at a temperature of 25 °C. The results showed that under the conditions studied Ti-12Mo-13Nb alloy exhibited passivation, which is desirable for corrosion resistance. Therefore the alloy is a potential alternative for the of Ti-6Al-4V used in orthopedic implants.


2018 ◽  
Vol 770 ◽  
pp. 248-254
Author(s):  
Leandro Bolzoni ◽  
Elisa Maria Ruiz-Navas ◽  
Elena Gordo

Cheap alloying elements and creative processing techniques are a way forward to open up more industrial opportunities for Ti in sectors where it is not extensively applied yet, rather than in aerospace and biomedical applications. This study focuses on understanding the joint effect of using a commercial steel powder to add Fe to pure Ti and its processing by press-and-sinter on the behaviour of low-cost PM Ti alloys. It is found that the calibrated addition of steel permits to develop new low-cost Fe-bearing Ti alloys that can satisfactorily be produced using the blending elemental PM approach. Densification of the samples and homogenization of the chemical composition are enhanced by the high diffusivity of Fe. The low-cost α+β alloys reach comparable physical and mechanical properties to those of wrought-equivalent PM Ti alloys, such as Ti-6Al-4V, and are therefore promising candidates for load-bearing lightweight products.


Sign in / Sign up

Export Citation Format

Share Document