scholarly journals Preparation and Properties of Ti-Y2O3 Composites for Implant Applications

2017 ◽  
Vol 62 (2) ◽  
pp. 663-666
Author(s):  
G. Adamek ◽  
J. Jakubowicz ◽  
M. Dewidar

AbstractThe paper presents the preparation of Ti-(1-30wt.%)Y2O3composites using the mechanical alloying process. Ti based materials are the best metallic biomaterials because of their excellent properties: biocompatibility, low Young moduli and high corrosion resistance. Pure Ti and Y2O3powders were alloyed under argon atmosphere in shaker type mill (Spex 8000) followed by pressing and sintering.The ultra-low grain size structure improves the mechanical properties and hardness of the new materials in comparison to microcrystalline Ti-based sinters. However, because of the porosity of approx. 20-30%, a decrease in the Young modulus is observed. Moreover, the new composites show good tendency towards covering by Ca-P compounds during soaking in SBF.

2019 ◽  
Vol 70 (4) ◽  
pp. 1302-1306 ◽  
Author(s):  
Madalina Simona Baltatu ◽  
Catalin Andrei Tugui ◽  
Manuela Cristina Perju ◽  
Marcelin Benchea ◽  
Mihaela Claudia Spataru ◽  
...  

At global level, there is a continuing concern for the research and development of alloys for medical and biomedical applications. Metallic biomaterials are used in various applications of the most important medical fields like orthopedic, dental and cardiovascular. The main metallic biomaterials used in human body are stainless steels, Co-based alloys and Ti-based alloys. Titanium and its alloys are of greater interest in medical applications because they exhibit characteristics required for implant materials, namely, good mechanical properties (less elasticity modulus than stainless steel or CoCr alloys, fatigue strength, high corrosion resistance), high biocompatibility. The aim of this review is to describe and compare the main characteristics (mechanical properties, corrosion resistance and biocompatibility) for latest research of nontoxic Ti alloys biomaterials used for medical field.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110294
Author(s):  
Khaled Abd El-Aziz ◽  
Emad M Ahmed ◽  
Abdulaziz H Alghtani ◽  
Bassem F Felemban ◽  
Hafiz T Ali ◽  
...  

Aluminum alloys are the most essential part of all shaped castings manufactured, mainly in the automotive, food industry, and structural applications. There is little consensus as to the precise relationship between grain size after grain refinement and corrosion resistance; conflicting conclusions have been published showing that reduced grain size can decrease or increase corrosion resistance. The effect of Al–5Ti–1B grain refiner (GR alloy) with different percentages on the mechanical properties and corrosion behavior of Aluminum-magnesium-silicon alloy (Al–Mg–Si) was studied. The average grain size is determined according to the E112ASTM standard. The compressive test specimens were made as per ASTM: E8/E8M-16 standard to get their compressive properties. The bulk hardness using Vickers hardness testing machine at a load of 50 g. Electrochemical corrosion tests were carried out in 3.5 % NaCl solution using Autolab Potentiostat/Galvanostat (PGSTAT 30).The grain size of the Al–Mg–Si alloy was reduced from 82 to 46 µm by the addition of GR alloy. The morphology of α-Al dendrites changes from coarse dendritic structure to fine equiaxed grains due to the addition of GR alloy and segregation of Ti, which controls the growth of primary α-Al. In addition, the mechanical properties of the Al–Mg–Si alloy were improved by GR alloy addition. GR alloy addition to Al–Mg–Si alloy produced fine-grained structure and better hardness and compressive strength. The addition of GR alloy did not reveal any marked improvements in the corrosion properties of Al–Mg–Si alloy.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
J. Jakubowicz ◽  
M. Sopata ◽  
G. Adamek ◽  
P. Siwak ◽  
T. Kachlicki

The nanocrystalline tantalum-ceramic composites were made using mechanical alloying followed by pulse plasma sintering (PPS). The tantalum acts as a matrix, to which the ceramic reinforced phase in the concentration of 5, 10, 20, and 40 wt.% was introduced. Oxides (Y2O3 and ZrO2) and carbides (TaC) were used as the ceramic phase. The mechanical alloying results in the formation of nanocrystalline grains. The subsequent hot pressing in the mode of PPS results in the consolidation of powders and formation of bulk nanocomposites. All the bulk composites have the average grain size from 40 nm to 100 nm, whereas, for comparison, the bulk nanocrystalline pure tantalum has the average grain size of approximately 170 nm. The ceramic phase refines the grain size in the Ta nanocomposites. The mechanical properties were studied using the nanoindentation tests. The nanocomposites exhibit uniform load-displacement curves indicating good integrity and homogeneity of the samples. Out of the investigated components, the Ta-10 wt.% TaC one has the highest hardness and a very high Young’s modulus (1398 HV and 336 GPa, resp.). For the Ta-oxide composites, Ta-20 wt.% Y2O3 has the highest mechanical properties (1165 HV hardness and 231 GPa Young’s modulus).


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3976 ◽  
Author(s):  
Farzan Barati ◽  
Mojtaba Latifi ◽  
Ehsan Moayeri far ◽  
Mohammad Hossein Mosallanejad ◽  
Abdollah Saboori

There has been growing interest in developing new materials with higher strength-to-weight ratios. Therefore, AM60 magnesium alloy reinforced with SiO2 nanoparticles was synthesized using ultrasound-casting method for the first time, in this study. We introduced 1 and 2 wt.% of SiO2 nanoparticles into the samples. Introduction of nanoparticles led to the grain size drop in MS2 (AM60 + 2 wt.% SiO2) samples. In addition, this increased the hardness of samples from 34.8 Vickers hardness (HV) in M (AM60) to 51.5 HV in MS2, and increased the compressive strength of MS2. Improvement of the mechanical properties can be attributed to a combination of Orowan, Hall–Petch and load-bearing mechanisms. However, ductility of the composites decreased with fracture strains being 0.41, 0.39 and 0.37, respectively, for samples M, MS1 and MS2. Fracture surfaces showed shear fracture in both composite samples with microcracks and a more brittle fracture in MS2.


2012 ◽  
Vol 706-709 ◽  
pp. 643-648
Author(s):  
Agata Dudek ◽  
Renata Włodarczyk

The demand for new materials in medicine is on the increase today. Long-lasting implants (joint prostheses, dentistry implants), made typically of metals and their alloys, are characterized with high mechanical properties, however their corrosion resistance and biocompatibility are relatively low. One of the methods to ensure particular functional properties is to employ composite implants, combining improved mechanical properties of metallic material with biocompatibility of ceramic materials. The study aimed to develop and analyse properties of metallic/ceramic composites made of the mixture of powders: austenitic steel (316LHD) and ceramics (Al2O3).


2007 ◽  
Vol 544-545 ◽  
pp. 821-824
Author(s):  
Indra ◽  
S.W. Oh ◽  
Hee Joon Kim

This work examined the mechanical properties of alumina that can directly be enhanced by ratio of nano sized alumina powders additives to micro size alumina powders (n/m ratio). These new materials have mechanical properties that are strongly grain size dependent and often significantly different from those of their coarser grained counter parts. The mechanical characteristics of samples were observed by using the indentation test system. This data shows that the relative density for the sample is increased with increasing Meyer hardness.


Author(s):  
F. G. Lovshenko ◽  
G. F. Lovshenko ◽  
A. I. Khabibulin

Actual problem of modern welding production is the creation of electrodes for maximum performance and efficiency of the process whithin the required reliability and durability of the structure. A promising way to improve mechanical properties of the weld metal is the implementation of the mechanism of dispersion hardening. Reactionary mechanical alloying is an effective technology of obtaining nanocrystalline modifying ligatures and modifiers. The use of electrodes with an experimental coating containing a mechanically alloyed, composite ligature to resolve transcrystalline type of structure of the weld metal and reduce the grain size by 2.5–3.0 times (from # 8–9 to #11–12) reduces by 20–30% the threshold of cold brittleness and increase by 15– 25% of the mechanical properties of the weld metal.


Author(s):  
P. Arulmurugan ◽  
J. Venkatraman ◽  
P. Saravanan

Titanium and its alloys are being extensively research and are applied relatively in different field of dentistry in since 1970s. Inherent advantage like high strength, ductility, Low modules of plasticity, high corrosion resistance as titanium alloy (Ti 6A 4V ELI –SS316). It is also light weight and highly tolerant to damage by other the alloy content. It is iron are mixing so forming the corrosion resistance and magnetism effect. So to add aluminum, vanadium and carbon content increases and iron content was decrease the various percentage for metal matrix composite(MMC) methods and stainless steel ss316 add by using stir casting method, and to check the hardness test, corrosion test and chemical specification and mechanical properties of the materials. To avoid the bone cells loss and bone desorption. It has superior biocompatibility making it easy to gratin and attach to bone all which being accepted by the human body.  


Author(s):  
F. G. Lovshenko ◽  
A. I. Khabibulin

Preparation, structure and properties of modified welds by using electrodes with coatings, which contain, along with classical components, a modifying ligature. The ligature is mechanically and thermally synthesized composite submicrocrystalline powders with nanosized inclusions of aluminum oxides. Reactionary mechanical alloying is an effective technology of obtaining nanocrystalline modifying ligatures and modifiers. The use of electrodes with an experimental coating containing a mechanically alloyed, composite ligature to resolve transcrystalline type of structure of the weld metal and reduce the grain size by 2,5–3,0 times (from № 8–9 to № 11–12) reduces by 20–30% the threshold of cold brittleness and increase by 15–25% of mechanical properties of the weld metal.


Sign in / Sign up

Export Citation Format

Share Document