Ti-Mo Alloys Used in Medical Applications

2015 ◽  
Vol 1128 ◽  
pp. 105-111 ◽  
Author(s):  
Mădălina Simona Bălţatu ◽  
Petrică Vizureanu ◽  
Mircea Horia Tierean ◽  
Mirabela Georgiana Minciună ◽  
Dragoş Cristian Achiţei

Metallic biomaterials are used in various applications of the most important medical fields (orthopedic, dental and cardiovascular). The main metallic biomaterials are stainless steels, Co-based alloys and Ti-based alloys. Recently, titanium alloys are getting much attention for biomaterials because these types of materials have very good mechanical properties, good corrosion resistance and an excellent biocompatibility. The paper contains important information about titanium alloys used for biomedical applications, which are considered the most widely. It is very important to understand the microstructural evolution and property-microstructure relationship in implant alloys. In the present paper, authors present a short literature review on general aspects of promising biocompatible binary Ti-Mo alloys compared with CoCr and stainless steel alloys, as an alternative of the known metallic biomaterials. This alloys show superior mechanical compatibility and very good biocompatibility. The aim of this review is to highlight the mechanical properties for several types of biomaterials, their application in medical field, especially the Ti-Mo group.

Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1447
Author(s):  
Madalina Simona Baltatu ◽  
Andrei Victor Sandu ◽  
Marcin Nabialek ◽  
Petrica Vizureanu ◽  
Gabriela Ciobanu

Over the last decade, researchers have been concerned with improving metallic biomaterials with proper and suitable properties for the human body. Ti-based alloys are widely used in the medical field for their good mechanical properties, corrosion resistance and biocompatibility. The TiMoZrTa system (TMZT) evidenced adequate mechanical properties, was closer to the human bone, and had a good biocompatibility. In order to highlight the osseointegration of the implants, a layer of hydroxyapatite (HA) was deposited using a biomimetic method, which simulates the natural growth of the bone. The coatings were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), micro indentation tests and contact angle. The data obtained show that the layer deposited on TiMoZrTa (TMZT) support is hydroxyapatite. Modifying the surface of titanium alloys represents a viable solution for increasing the osseointegration of materials used as implants. The studied coatings demonstrate a positive potential for use as dental and orthopedic implants.


2019 ◽  
Vol 70 (4) ◽  
pp. 1302-1306 ◽  
Author(s):  
Madalina Simona Baltatu ◽  
Catalin Andrei Tugui ◽  
Manuela Cristina Perju ◽  
Marcelin Benchea ◽  
Mihaela Claudia Spataru ◽  
...  

At global level, there is a continuing concern for the research and development of alloys for medical and biomedical applications. Metallic biomaterials are used in various applications of the most important medical fields like orthopedic, dental and cardiovascular. The main metallic biomaterials used in human body are stainless steels, Co-based alloys and Ti-based alloys. Titanium and its alloys are of greater interest in medical applications because they exhibit characteristics required for implant materials, namely, good mechanical properties (less elasticity modulus than stainless steel or CoCr alloys, fatigue strength, high corrosion resistance), high biocompatibility. The aim of this review is to describe and compare the main characteristics (mechanical properties, corrosion resistance and biocompatibility) for latest research of nontoxic Ti alloys biomaterials used for medical field.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1774 ◽  
Author(s):  
Haoran Zhang ◽  
Juntao Zhao ◽  
Tieling Xing ◽  
Shenzhou Lu ◽  
Guoqiang Chen

Silk fibroin (SF) is a natural material with good biocompatibility and excellent mechanical properties, which are complementary to graphene with ultrahigh electrical conductivity. In this study, to maximally combine graphene and silk fibroin, a well-dispersed silk fibroin/graphene suspension was successfully prepared in a simple and effective way. Then we prepared a flexible conductive SF/graphene film with a minimum resistance of 72.1 ± 4.7 Ω/sq by the casting method. It was found that the electrical conductivity of the SF/graphene film was related to the water content of the film, and the variation was more than 200 times. Therefore, it will play an important role in the field of humidity sensors. It also has excellent mechanical properties in both wet and dry states. These unique features make this material a promising future in the fields of biomedical applications, wearable sensors, and implantable internal sensors.


2016 ◽  
Vol 869 ◽  
pp. 935-939 ◽  
Author(s):  
M.R. Seixas ◽  
C. Bortolini Jr. ◽  
R.T. Konatu ◽  
A. Pereira Jr. ◽  
Ana Paula Rosifini Alves Claro

Titanium and its alloys have been used in biomedical applications due to their excellent properties such as high corrosion resistance, biocompatibility and mechanical properties. In orthodontics, initially, it was common to use nickel-titanium alloys, however due to allergic reactions of patients, new titanium alloys containing elements such as niobium and tantalum are being studied. The Ti-25Ta-25Nb alloy is a β-titanium alloy and it has a low elastic modulus. In the present work, the ternary alloy was evaluated after cold work by swaging followed by solubilization treatment. Microstructure and mechanical properties were evaluated after each step of the process. Results were similar to find in the literature for this alloy obtained by other processing rote.


2020 ◽  
Vol 321 ◽  
pp. 05008
Author(s):  
Fabian Haase ◽  
Carsten Siemers ◽  
Lina Klinge ◽  
Cheng Lu ◽  
Patric Lang ◽  
...  

CP-Ti, Ti 6A l 4V (ELI), and Ti 6Al 7Nb are often used for manufacturing osteosynthesis products or implants. However, researches have revealed that Al and V can have detrimental effects on the human body. Therefore, several Al- and V-free near-α and (α+β) titanium alloys have been developed on the basis of CP-Ti Grade 4+ (Ti 0.4O 0.5Fe 0.08C). They should possess similar or better mechanical properties than Ti 6Al 4V (ELI) combined with an improved biocompatibility and good corrosion resistance. O, C, Fe, Au, Si, Nb, or Mo have been used as alloying elements, which are either already present in the human body or are biocompatible. Several of the studied alloys show a strength and ductility fulfilling the requirements of Ti 6Al 4V ELI as specified in ASTM F136. For instance, Ti 0.44O 0.5Fe 0.08C 2.0Mo exhibits a YTS of approx. 1005 MPa, an UTS of approx. 1015 MPa, and an elongation at rupture of at least 17%. Therefore, one or more of the studied alloys are promising candidates for replacing Ti 6Al 4V ELI in osteosynthesis and implant applications.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1696 ◽  
Author(s):  
Jarosław Jakubowicz

In the last half century, great attention has been paid to materials that can be used in the human body to prepare parts that replace failed bone structures. Of all materials, Ti-based materials are the most desirable, because they provide an optimum combination of mechanical, chemical and biological properties. The successful application of Ti biomaterials has been confirmed mainly in dentistry, orthopedics and traumatology. The Ti biomaterials provide high strength and a relatively low Young’s modulus. Titanium biocompatibility is practically the highest of all metallic biomaterials, however new solutions are being sought to continuous improve their biocompatibility and osseointegration. Thus, the chemical modification of Ti results in the formation of new alloys or composites, which provide new perspectives for Ti biomaterials applications. Great attention has also been paid to the formation of nanostructures in Ti-based biomaterials, which has leads to extremely good mechanical properties and very good biocompatibility. Additionally, the surface treatment applied to Ti-based biomaterials provides faster osseointegration and improve in many cases mechanical properties. The special issue “Ti-Based Biomaterials: Synthesis, Properties and Applications” has been proposed as a means to present recent developments in the field. The articles included in the special issue cover broad aspects of Ti-based biomaterials formation with respect to design theirs structure, mechanical and biological properties, as highlighted in this editorial.


Author(s):  
Xingang Wang ◽  
Li Xiang ◽  
Yongxuan Peng ◽  
Zihao Dai ◽  
Yuqing Hu ◽  
...  

Cardiovascular diseases have become a major threat to human health. The adhesion formation is an inevitable pathophysiological event after cardiac surgery. We have previously shown that gelatin/polycaprolactone (GT/PCL, mass ratio 50:50) electrospun nanofibrous membranes have high potential in preventing postoperative cardiac adhesion, but the effect of GT:PCL composition on anti-adhesion efficacy was not investigated. Herein, nanofibrous membranes with different GT:PCL mass ratios of 0:100, 30:70, 50:50, and 70:30 were prepared via electrospinning. The 70:30 membrane failed to prevent postoperative cardiac adhesion, overly high GT contents significantly deteriorated the mechanical properties, which complicated the suturing during surgery and hardly maintained the structural integrity after implantation. Unexpectedly, the 0:100 membrane (no gelatin contained) could not effectively prevent either, since its large pore size allowed the penetration of numerous inflammatory cells to elicit a severe inflammatory response. Only the GT:PCL 50:50 membrane exhibited excellent mechanical properties, good biocompatibility and effective anti-cell penetration ability, which could serve as a physical barrier to prevent postoperative cardiac adhesion and might be suitable for other biomedical applications such as wound healing, guided tissue or bone regeneration.


2020 ◽  
Vol 184 ◽  
pp. 01045
Author(s):  
Pradeep Kumar Manne ◽  
Nutenki Shravan Kumar ◽  
Tanya Buddi ◽  
A. Anitha Lakshmi ◽  
Ram Subbiah

Powder metallurgy (PM) is a technique in which materials or components are made from metal powders. In this paper, the overview about titanium alloys and their advantages over engineering applications has been discussed. They are very strong and also possess great mechanical properties and incredible corrosion and wear resistance, and also capable of performing operations at elevated temperatures approximately up to 600ºC. This paper provides various compositions of titanium alloys and various powder metallurgy techniques used for sintering powders of various compositions and their applications. The properties of titanium compounds show the manufacturing of cost effective component. As a result of their fantastic mechanical, physical and organic execution they are finding consistently expanding application in biomedical applications.


Author(s):  
Franklin Anene ◽  
Jaafar Aiza ◽  
Ismail Zainol ◽  
Azmah Hanim ◽  
Mohd Tahir Suraya

Metallic implants are extensively used to treat a spectrum of orthopaedic related disorders. Among the metals, titanium and its alloys are considered most excellent and indispensable material for the production of orthopaedic implants regarding their sterling mechanical properties and exceptional biocompatibility. Recently, rapid progress in developing non-toxic titanium-based alloys with modulus similar to that of human bone has inspired researchers globally. Thus, many studies have focused on titanium alloys, their heat treatment processes and several processing technologies. Additive manufacturing has been designed to enhance their mechanical properties tailored towards biomedical applications. Inarguably, the need to further improve on the implant’s biocompatibility with bodily environment for optimum service life is of great importance. Hence, hydroxyapatite coating provides an improvement as demonstrated by in vitro as well as in vivo studies. The present article critically reviews, based on recent scientific literatures, the progress made thus far in the development of titanium-based alloys, additive manufacturing processes and their heat and surface treatments tailored towards biomedical applications.


Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1424
Author(s):  
Daniela Cascadan ◽  
Carlos Roberto Grandini

Titanium alloys have great potential for use as biomaterials due to good biocompatibility and mechanical properties. The nickel addition to titanium improves the wear, corrosion and mechanical resistance of this element. The objective of this paper was to investigate the effects of oxygen on the structure, microstructure and some selected mechanical properties of this alloy system. The results showed that the samples present the adequate nickel concentration and low concentration of other metals. The alloys exhibit predominantly the α and intermetallic Ti2Ni phases, and the amount of it increases according to the nickel concentration. In the Ti-15Ni and Ti-20Ni alloys, this intermetallic reacted with oxygen forming Ti4Ni2O trioxide. The microstructures varied according to the processing, as well as the microhardness values. Elastic modulus values are slightly above titanium due to the formation of a new intermetallic phase but have not varied significantly with processing and doping with oxygen.


Sign in / Sign up

Export Citation Format

Share Document