scholarly journals ANALISIS PERBAIKAN KUALITAS INJECTION PART DENGAN PENDEKATAN LEAN SIX SIGMA

2020 ◽  
Vol 1 (01) ◽  
pp. 79-90
Author(s):  
Miftakul Huda

Lean Six Sigma is a collective approach, which uses various techniques and tools for quality improvement. Here, Lean Six Sigma methodology was applied to a small injection molding unit (which can be taken as representative of small and medium-size industries) manufacturing casing of electronics part. The DMAIC (Define, Measure, Analyze, Improve and Control) approach of Lean Six Sigma was applied to reduce the rejection rate of the casing (child part of an electronic product) by changing setting parameters: mold temperature, injection pressure and injection speed in the injection mold process. The statistical techniques such as DOE full factorial experiment, and process capability analysis were done to finding the process capability before and after the Lean Six Sigma implementation. After implementing the Lean Six Sigma DMAIC approach it was found that injection molding firms can increase their profit by increase yield rate and deleting rejection rate of casing part. Lean Six Sigma implementation increase the process sigma level from 4,3σ to 4,7σ by a reduction in casing flow mark variation and transparency. This increase in sigma level will give defect cost reduction to the industry which is a good figure for such an industry.  Abstrak Lean Six Sigma adalah pendekatan kolektif, yang menggunakan berbagai teknik dan alat untuk peningkatan kualitas. Di sini, metodologi Lean Six Sigma diterapkan pada unit injection molding kecil (yang dapat dianggap mewakili industri ukuran kecil dan menengah) manufaktur casing part. Pendekatan DMAIC (Define, Measure, Analyze, Improve and Control) Lean Six Sigma diterapkan untuk mengurangi tingkat penolakan casing part (bagian anak dari produk elektronik) dengan mengubah tiga setting parameter: suhu mold, tekanan dan kecepatan injection dalam proses cetakan injeksi. Teknik statistik seperti DOE full factorial experiment,dan  analisis kemampuan proses dilakukan untuk menemukan kemampuan proses sebelum dan sesudah implementasi Lean Six Sigma. Setelah menerapkan pendekatan Lean Six Sigma DMAIC ditemukan bahwa perusahaan injection molding dapat meningkatkan keuntungannya dengan menaikan yield rate dengan mengendalikan tingkat penolakan casing part. Implementasi Lean Six Sigma meningkatkan tingkat sigma proses dari 4,3σ menjadi 4,8σ dengan mengurangi variasi flow mark dan transperancy. Kenaikan tingkat sigma ini akan memberikan pengurangan biaya akibat cacat ke industri yang merupakan contoh yang baik untuk industri semacam ini.                                                                                                                                                

2014 ◽  
Vol 606 ◽  
pp. 141-145
Author(s):  
Che Ku Abdullah Che Ku Kairulazam ◽  
M.I. Hussain ◽  
Zuraidah Mohd Zain ◽  
Nabilah A. Lutpi

High gloss plastics part in injection molding industries were widely used in Malaysia. However the high rejection rate in this industries were major problem affecting the economic aspects. Therefore this paper presents an approach of implementing six sigma method to reduce the rejection rate in a plastic injection molding process for high gloss plastics part. Define, Measure, Analyze Improve and Control (DMAIC) methodology was applied as basis of the study. By using current process, the average of rejection is 40.6% and the aim of this study is to reduce the rejection rate to less than 10 % . All potential factors were taken into account to identify the significant factors. The improvement process was made base on the analysis output. This study was successful with increment in sigma level from 1.74 σ to 3.00 σ. .


2019 ◽  
Vol 70 (05) ◽  
pp. 447-456 ◽  
Author(s):  
ABBES NEDRA ◽  
SEJRI NÉJIB ◽  
CHAABOUNI YASSINE ◽  
CHEIKHROUHOU MORCHED

This paper proposes a new Lean Six Sigma (LSS) methodology to improve process for clothing small- and medium-sized enterprise SME. The methodology is based on combination of two approaches which are the PDCA (Plan, Do, Check, and Act) and the DMAIC (Define, Measure, Analyze, Improve, and Control). The combination technique consists in applying the PDCA to continuously improve and control every DMAIC steps. The DMAIC approach has included Lean Six Sigma tools and techniques, as well as the success factors obtained from a survey, to improve its efficiency. The proposed approach is applied to improve the performances indicators such as Z sigma, Cp, cycle time, and lead time for the case of clothing SME in Tunisia. As an example, the Z-sigma has increased from the sigma level was improved from 1.45 to 3.85. The process capability Cp from 0.5 to 1.3 and the lead time was decreased from 39.47 days to 30.23 days. Finally, the study is concluded by sorting out the effects of the type of produced articles and the presence or not of the quality certification on the application of the proposed approach. The effectives from using PDCADMAIC technique are better when it’s applied with certified company, than non-certified one.


Author(s):  
A. B. Laptev ◽  
A. S. Nesterov ◽  
A. M. Vardanyan ◽  
A. M. Vardanyan

The work is dedicated to the effects of climatic factors on polyethylene terephthalate (PET) in terms of changes in the structure and interaction of polymer molecules. The kinetic concept of the strength of PET has been developed, and the factors influencing the strength have been considered. Effects of moisture, thermal oxidative destruction, and UV-radiation on the structure of PET have been investigated. Polymers’ properties predicting, durability and their computer modeling have been analyzed. A model of changes in PET properties under the influence of temperature, moisture and UV-radiation was constructed using the methods of a full factorial experiment. It has been shown that in the initial period of exposure, adsorption and diffusion of moisture, hydrolysis and surface oxidation occur; prolonged and constant exposure to UV-radiation break the bonds formed by moisture, then the C–C and C–O bonds in the PET molecule brake and new intermolecular bonds are formed. In the amorphous state of PET, the breaking of bonds in the polymer chain and the formation of bonds between two adjacent polymer chains, the formation of more densely packed nodes, the destruction of the polymer and its aging, are equally probable. Temperature has a secondary effect, facilitating both hydrolysis and oxidation and polymer degradation.


2018 ◽  
Vol 154 ◽  
pp. 01088
Author(s):  
Dwi Adi Purnama ◽  
Riadho Clara Shinta ◽  
Vembri Noor Helia

Indonesia has several creative economy sectors that rapidly developed and potentially can be improved to 7% annually. One of them is textile industry specifically bag industry. This industry’s development could enhance the production of commodities and emerge other SMEs to initiate the similar field. Therefore, to raise its profit, customer’s satisfaction must be elevated by minimizing defected products. In order to support it, an improvement on production process is a must. This research employs Six Sigma methods integration with Fuzzy Analytical Hierarchy Process (Fuzzy AHP)-Failure Mode and Effect Anlysis (FMEA). Six Sigma is designated to analyze the level of products’ defect through Define, Measure, Analyze, Improve, and Control (DMAIC) stages and assess the factors that cause the defects by using Fuzzy AHP decision support system and FMEA in risk analysis on defect. The result of the research shows the shortage of defects that demonstrated by DPMO indicator and Sigma level. It is identified that the number of DPMO was being reduced from 20003.75 to 11185.73. While Six Sigma level demonstrated the enhancement from 3.61 to 3.86. Those suggest that the improvement solution provides has significant effect on the defects decreasing at the bag convection industry.


2018 ◽  
Vol 3 (2) ◽  
pp. 101
Author(s):  
Priskila Christine Rahayu ◽  
Vanesa Darvin

This study focused on quality improvement on ceramic tiles production process at PT Arwana Citramulia. This study used data defects for 12 months (May 2016 – April 2017) and only focus on one type of defect and it is chop corner. Six sigma with DMAIC (define, measure, analyze, improve, and control) approach was used to improve the process. Each step of DMAIC was conducted to carefully analyze and keep the process precisely. The ceramic tiles production process contains a number of 4375 products defects in million opportunities (DPMO), with sigma level of 4.13. In the improve step of DMAIC, FMEA form was used to propose some recommendations in order to improve the process, some of that that are provision of lubricant periodically by the operator, polishing on the surface of the liner to clean and clear, examination and maintenance periodically. Keyword : Quality, Six Sigma, DMAIC, Defects.


2019 ◽  
Vol 3 (1) ◽  
Author(s):  
Suharto Suharto ◽  

Abstract This study aims to determine and identify the causes of defects in the production process of PT. Triteguh Manunggal Sejati and know the level of sigma level. This research uses the six sigma method with the DMAIC approach as a quality control tool, which includes the Define, Measure, Analyze, Improve and Control stages. Based on this study the results obtained are the level of sigma level at PT.Triteguh Manunggal Sejati is 4.96, which means that in the stage of sigma level the company has not reached the level of six sigma levels because in the production process at PT.Triteguh Manunggal Sejati still has product defects in the production process not yet achieved zero defect. The causes of product defects are based on cause and effect diagrams namely lid / seal defects are leaky lid, broken lid, and tilted lid. Kata kunci : Defect, Six Sigma, DMAIC, cause and effect diagram


2019 ◽  
pp. 7-8
Author(s):  
M. M. Egorov ◽  
V. I. Milov ◽  
M. K. Timin ◽  
T. P. Mukhina ◽  
V. S. Smirnov ◽  
...  

The effect of pressure, temperature and time during direct pressing on the strength and optical characteristics of adhesive plasticized polyvinyl butyral films is studied. A mathematical analysis of the results of a full factorial experiment is carried out and the regression equations are derived.


Sign in / Sign up

Export Citation Format

Share Document