A Cooperative Guidance Law for UAVs Target Tracking

2021 ◽  
Vol 19 ◽  
pp. 324-335
Author(s):  
Xin Wang

The problem of automatic tracking of ground targets is one of the important issues that UAVs need to face in task applications. The main concern of cooperative tracking is how to track a ground target and maintain the UAV formation simultaneously. In this paper, a new leader-follower formation is constructed to track a ground target. Firstly, a new leader UAV guidance law is proposed to track the ground target in the standoff mode, the stability is proved using a Lyapunov function. Secondly, new guidance laws for standoff tracking of the leader UAV and controlling of the inter-UAV angle of the circle formation are designed for follower UAVs, respectively, stabilities are also proved using two Lyapunov functions. Numerical simulation experiments show that the new leader-follower formation can track the static and moving targets well and its performance is better than the classic LVFG algorithm

Author(s):  
Chuanjian Lin ◽  
Jingping Shi ◽  
Yongxi Lyu ◽  
Yueping Wang

Target tracking of ground targets is a significant application of unmanned aerial vehicles (UAVs) in civil and military fields. There are two common modes for target tracking: over-flight tracking and standoff tracking. Each tracking method has a wide application prospect. However, many researchers have studied these two tracking methods separately and designed different guidance laws, which is not conducive to practical application. In this paper, a new guidance law based on sliding mode guidance (SMG) is proposed for tracking a stationary target, which is compatible with the two tracking modes. The stability and finite-time convergence of the guidance law are proved. Then, the guidance is extended to tracking a moving target. The numerical simulations are carried out for the tracking problems of ground targets, and the results verify the effectiveness of the proposed guidance law.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Zhen Li ◽  
Xin Chen ◽  
Zhenhua Zhao

This paper investigates two guidance laws of standoff cooperative tracking static and moving of multiple autonomous unmanned aerial vehicles for targets from the perspective of the control system design. In the scheme of the proposed guidance laws, one vehicle is chosen as leader and others as followers. The leader only needs the measurement of the target, and the followers only measure the leader and its neighbors in the communication topology network. By using the proposed guidance laws, it is guaranteed that all vehicles can track a static or moving target with an evenly spaced formation of circle. Considering the coupling of tracking and cooperation, the stability analysis is performed by constructing two relatively independent subsystems based on Lyapunov theory, and the corresponding rigorous proofs of stability are given. By comparing with the Lyapunov vector field guidance law, the simulation results verify the effectiveness and superiority of the proposed guidance laws.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Yang Chen ◽  
Jianhong Liang ◽  
Chaolei Wang ◽  
Yicheng Zhang ◽  
Tianmiao Wang ◽  
...  

A guidance law has been designed to guide the small unmanned aerial vehicle towards the predefined horizontal smooth path. The guidance law only needs the mathematical expression for the predefined path, the positions, and the velocities of the vehicle in the horizontal inertial frame. The stability of the guidance law has been demonstrated by the Lyapunov stability arguments. In order to improve the path following performance, one of the parameters of the guidance law is tuned by using the fuzzy logic which will still keep its stability. The simulation experiments in the Matlab/Simulink environment to realize the square-, circular-, and the athletics track-style paths following are given to verify the effectiveness of the proposed method. The simulation results show that the path following performance will be improved with smaller overshoot and oscillation amplitude and shorter arrival time with the parameter tuned.


2021 ◽  
Vol 11 (23) ◽  
pp. 11178
Author(s):  
Yukuan Liu ◽  
Guanglin He ◽  
Yanan Du ◽  
Yulong Zhang ◽  
Zenghui Qiao

For tactical missiles, sliding mode control and super-twisting algorithms have been widely studied in the area of guidance law design. However, these methods require the information of the target accelerations and the target acceleration derivatives, which is always unknown in practice. In addition, guidance laws utilizing these tools always have chattering phenomena and large acceleration commands. To solve these problems, this article introduces a barrier function based super twisting controller and expands the controller to a multivariable adaptive form. Consequently, a multivariable adaptive super-twisting guidance law based on barrier function is proposed. Moreover, the stability of the guidance law is analyzed, and the effectiveness and the robustness are demonstrated by three simulation examples. Compared with previous guidance laws using sliding mode control or super-twisting algorithm, the one proposed in this paper does not require the information of target accelerations, nor target acceleration derivatives; it has smaller super-twisting gains so that has smaller acceleration commands; it can increase and decrease the gains to follow the target accelerations and maintain the sliding mode, and it does not chatter.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Luyao Zang ◽  
Defu Lin ◽  
Yi Ji

This paper documents a novel nonsingular continuous guidance which can drive the line-of-sight (LOS) angular rate to converge to zero in finite time in the presence of impact angle constraints. More specifically, based on the second-order sliding mode control (SMC) theory, a second-order observer (2-OB) is presented to estimate the unknown target maneuvers, while a super twisting algorithm- (STA-) based guidance law is presented to restrict the LOS angle and angular rate. Compared with other terminal sliding mode guidance laws, the proposed guidance law absorbs the merits of the conventional linear sliding mode (LSM) and terminal sliding mode (TSM) and uses switching technique to avoid singularity. In order to verify the stability of the proposed guidance law, a finite-time bounded (FTB) function is invited to prove the boundedness of the proposed observer-controller system and a Lyapunov approach is presented to prove the finite-time convergence (FTC) of the proposed sliding system. Rigorous theoretical analysis and numerical simulations demonstrate the mentioned properties.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2908
Author(s):  
Kazuo Umemura ◽  
Ryo Hamano ◽  
Hiroaki Komatsu ◽  
Takashi Ikuno ◽  
Eko Siswoyo

Solubilization of carbon nanotubes (CNTs) is a fundamental technique for the use of CNTs and their conjugates as nanodevices and nanobiodevices. In this work, we demonstrate the preparation of CNT suspensions with “green” detergents made from coconuts and bamboo as fundamental research in CNT nanotechnology. Single-walled CNTs (SWNTs) with a few carboxylic acid groups (3–5%) and pristine multi-walled CNTs (MWNTs) were mixed in each detergent solution and sonicated with a bath-type sonicator. The prepared suspensions were characterized using absorbance spectroscopy, scanning electron microscopy, and Raman spectroscopy. Among the eight combinations of CNTs and detergents (two types of CNTs and four detergents, including sodium dodecyl sulfate (SDS) as the standard), SWNTs/MWNTs were well dispersed in all combinations except the combination of the MWNTs and the bamboo detergent. The stability of the suspensions prepared with coconut detergents was better than that prepared with SDS. Because the efficiency of the bamboo detergents against the MWNTs differed significantly from that against the SWNTs, the natural detergent might be useful for separating CNTs. Our results revealed that the use of the “green” detergents had the advantage of dispersing CNTs as well as SDS.


Author(s):  
Min-Guk Seo ◽  
Chang-Hun Lee ◽  
Tae-Hun Kim

A new design method for trajectory shaping guidance laws with the impact angle constraint is proposed in this study. The basic idea is that the multiplier introduced to combine the equations for the terminal constraints is used to shape a flight trajectory as desired. To this end, the general form of impact angle control guidance (IACG) is first derived as a function of an arbitrary constraint-combining multiplier using the optimal control. We reveal that the constraint-combining multiplier satisfying the kinematics can be expressed as a function of state variables. From this result, the constraint-combining multiplier to achieve a desired trajectory can be obtained. Accordingly, when the desired trajectory is designed to satisfy the terminal constraints, the proposed method directly can provide a closed form of IACG laws that can achieve the desired trajectory. The potential significance of the proposed result is that various trajectory shaping IACG laws that can cope with various guidance goals can be readily determined compared to existing approaches. In this study, several examples are shown to validate the proposed method. The results also indicate that previous IACG laws belong to the subset of the proposed result. Finally, the characteristics of the proposed guidance laws are analyzed through numerical simulations.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 353
Author(s):  
Ligia Munteanu ◽  
Dan Dumitriu ◽  
Cornel Brisan ◽  
Mircea Bara ◽  
Veturia Chiroiu ◽  
...  

The purpose of this paper is to study the sliding mode control as a Ricci flow process in the context of a three-story building structure subjected to seismic waves. The stability conditions result from two Lyapunov functions, the first associated with slipping in a finite period of time and the second with convergence of trajectories to the desired state. Simulation results show that the Ricci flow control leads to minimization of the displacements of the floors.


Author(s):  
Chenqi Zhu

In order to improve the guiding accuracy in intercepting the hypersonic vehicle, this article presents a finite-time guidance law based on the observer and head-pursuit theory. First, based on a two-dimensional model between the interceptor and target, this study applies the fast power reaching law to head-pursuit guidance law so that it can alleviate the chattering phenomenon and ensure the convergence speed. Second, target maneuvers are considered as system disturbances, and the head-pursuit guidance law based on an observer is proposed. Furthermore, this method is extended to a three-dimensional case. Finally, comparative simulation results further verify the superiority of the guidance laws designed in this article.


2010 ◽  
Vol 2010 ◽  
pp. 1-23 ◽  
Author(s):  
Josef Diblík ◽  
Denys Ya. Khusainov ◽  
Irina V. Grytsay ◽  
Zdenĕk Šmarda

Many processes are mathematically simulated by systems of discrete equations with quadratic right-hand sides. Their stability is thought of as a very important characterization of the process. In this paper, the method of Lyapunov functions is used to derive classes of stable quadratic discrete autonomous systems in a critical case in the presence of a simple eigenvalueλ=1of the matrix of linear terms. In addition to the stability investigation, we also estimate stability domains.


Sign in / Sign up

Export Citation Format

Share Document