Determination of Radiation Exposure to Iodine-131 Emissions During Normal Operation of the Industrial Reactor Installation at Fsue “PO Mayak” Taking into Account Physical and Chemical Forms

ANRI ◽  
2020 ◽  
Vol 0 (4) ◽  
pp. 46-54
Author(s):  
Evgeniy Nikitenko ◽  
Nikolay Romadov ◽  
Mariya Pyshkina

The determination of the physicochemical forms of radioiodine in the gas-air environment of an industrial nuclear reactor is necessary to solve related problems – technological control and radiation safety. In the technological context, the results obtained make it possible to adequately assess the efficiency of purification of emissions of radioactive iodine isotopes, the choice of instruments and methods for controlling emissions. In the context of radiation safety, research results make it possible to correctly assess the radiation effects on the environment and humans, substantiation of emission standards for the atmosphere and confirmation of the safety of operation of an industrial reactor installation. The research method is based on the difference in the deposition of radioiodine on a set of one AFA-RMP aerosol filter and six filters of the AFA-SI type, which makes it possible to separately determine the 131I aerosol, easily and hardly sorbed form. It has been shown that the non-purified gas-aerosol mixture mainly contains radioactive iodine in the form of gaseous hardly adsorbed compounds. For 131I, the most probable percentage in volumetric activity of hardly adsorbed, easily adsorbed compounds and iodine aerosols was obtained. Based on the data obtained, an assessment of dose loads was carried out taking into account the annual emissions of the reactor installation and weather conditions. A conservative approach to assessing the radiation exposure of 131I emissions is 47 times higher than the assessment taking into account its physicochemical forms.

2018 ◽  
Vol 12 (1) ◽  
pp. 742-752 ◽  
Author(s):  
Gundeep Singh ◽  
Amit Sood ◽  
Ambreen Kaur ◽  
Deepak Gupta

Introduction: With the advent of newer radiographic diagnostic procedures of the maxillofacial region, there is a drastic increase in the use of Ionizing radiation which further leads to increased chance of radiation hazards among the patients and the health care workers. In addition to the diagnostic information extracted, the radiation exposure carries the potential to induce carcinogenesis in the exposed individual. However, the amount of Radiation exposure in dentistry is significantly low but it is still harmful owing to the requirement of repeated radiographic examination during the dental treatment. Therefore, to ensure minimum and inevitable exposure during dental treatment, it is necessary to follow principles of radiation protection and safety. Recommendations: Several studies in the literature have revealed that the attitude and knowledge of the dental professionals regarding radiation safety is not up to the mark. Henceforth, there is a necessity of implementing certain basic guidelines regarding radiation safety and protection. Further state dental councils must advocate new and interesting methods of education regarding the same and should introduce strict rules and penalties for this spectrum of field. Conclusion: This present short commentary is to familiarize the dental practitioner regarding the methods to minimize the risk of the radiation hazards. Further this article will also educate the dental practitioners regarding the pathogenesis of Radiation effects during Radiation therapy of head and neck region along with pertinent management protocols.


Author(s):  
Khaled Salman ◽  
Shereen Wagieh ◽  
Aquib Bakhsh ◽  
Tarek Al-Monshy ◽  
Omnia Talaat ◽  
...  

Abstract Background Radiation exposure from patients treated with radioactive iodine (131I) represents a radiation hazard to children and adolescents, representing the most vulnerable group of household contacts. Our aim was to calculate the cumulative radiation exposure (CRE) figures to children and adolescents sharing the same home with outpatients treated with low-dose 131I. The secondary aim was to study the demographic and educational factors that may significantly affect radiation exposure to them. Results The whole number of household contacts less than 18 years was 99, out of them 49 ≤ 12 years. CRE level to children and adolescents ranged from 79 to 934 uSv. The mean, median, and 75th percentile figures were 284 ± 178 uSv, 215 uSv, and 334 uSv, respectively. The compliance of this group of contacts to radiation exposure constraint (1 mSv) was 100%. All CRE values were below this figure with 75% of them below half of this constraint. Thirteen adolescents from 12 to 18 years and 17 mothers of 23 household contacts ≤ 12 years got radiation safety instructions (RSI) directly from a radiation safety officer (RSO). This group had a significantly lower mean CRE value (184 ± 93 uSv) compared to those who got RSI from the patient or from other family members (298 ± 185 uSv) with a significant p value. Conclusion The compliance of adolescents and children to the 1-mSv radiation exposure constraint is 100%. It is advised for adolescents and mothers of children in contact with 131I-treated patients to get direct RSI from the RSO, which is the only factor associated with significantly lower radiation exposure figures.


2010 ◽  
Vol 49 (S 01) ◽  
pp. S53-S58 ◽  
Author(s):  
W. Dörr

SummaryThe curative effectivity of external or internal radiotherapy necessitates exposure of normal tissues with significant radiation doses, and hence must be associated with an accepted rate of side effects. These complications can not a priori be considered as an indication of a too aggressive therapy. Based on the time of first diagnosis, early (acute) and late (chronic) radiation sequelae in normal tissues can be distinguished. Early reactions per definition occur within 90 days after onset of the radiation exposure. They are based on impairment of cell production in turnover tissues, which in face of ongoing cell loss results in hypoplasia and eventually a complete loss of functional cells. The latent time is largely independent of dose and is defined by tissue biology (turnover time). Usually, complete healing of early reactions is observed. Late radiation effects can occur after symptom-free latent times of months to many years, with an inverse dependence of latency on dose. Late normal tissue changes are progressive and usually irreversible. They are based on a complex interaction of damage to various cell populations (organ parenchyma, connective tissue, capillaries), with a contribution from macrophages. Late effects are sensitive for a reduction in dose rate (recovery effects).A number of biologically based strategies for protection of normal tissues or for amelioration of radiation effects was and still is tested in experimental systems, yet, only a small fraction of these approaches has so far been introduced into clinical studies. One advantage of most of the methods is that they may be effective even if the treatment starts way after the end of radiation exposure. For a clinical exploitation, hence, the availability of early indicators for the progression of subclinical damage in the individual patient would be desirable. Moreover, there is need to further investigate the molecular pathogenesis of normal tissue effects in more detail, in order to optimise biology based preventive strategies, as well as to identify the precise mechanisms of already tested approaches (e. g. stem cells).


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 610
Author(s):  
Chunbao Li ◽  
Hui Cao ◽  
Mengxin Han ◽  
Pengju Qin ◽  
Xiaohui Liu

The marine derrick sometimes operates under extreme weather conditions, especially wind; therefore, the buckling analysis of the components in the derrick is one of the critical contents of engineering safety research. This paper aimed to study the local stability of marine derrick and propose an analytical method for geometrically nonlinear problems. The rod in the derrick is simplified as a compression rod with simply supported ends, which is subjected to transverse uniform load. Considering the second-order effect, the differential equations were used to establish the deflection, rotation angle, and bending moment equations of the derrick rod under the lateral uniform load. This method was defined as a geometrically nonlinear analytical method. Moreover, the deflection deformation and stability of the derrick members were analyzed, and the practical calculation formula was obtained. The Ansys analysis results were compared with the calculation results in this paper.


Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 961
Author(s):  
J. Antonio Cortiñas Rodríguez ◽  
María Fernández-González ◽  
Estefanía González-Fernández ◽  
Rosa A. Vázquez-Ruiz ◽  
F. Javier Rodríguez-Rajo ◽  
...  

In the present study, we analyzed the main parameters related with the potential fertilization ability of two grapevine varieties, Godello and Mencía, during the years 2017 and 2018. The research was carried out in two vineyards of the Galician winegrowing Designation of Origin areas of Ribeiro and Ribeira Sacra. Ten vines of each variety were selected for bunch and flower counting, pollen calculations, pollen viability studies by means of aceto-carmine (AC) stain and 2, 3, 5-triphenyl tetrazolium chloride (TTC) methods, and the determination of their germination rate. In all vineyards the 50% fruitset was reached, except for Godello in Cenlle during 2017. The mean coulure value was higher for Godello (40.5%) than for Mencía (31%). Analyzing the pollen production per plant and airborne pollen levels, we observed important discordances between them, which can be due to the influence of weather conditions and be related with self-pollination processes. We found important differences on pollen viability depending on the applied method and variety, with higher values for the AC method than the TTC for both varieties in all study plots, and higher values for Mencía variety than Godello. Regarding germination rates, we observed a marked reduction in 2017 with respect to 2018, in all study sites and for both varieties. The analyzed parameters were useful to explain the different productive abilities of Godello and Mencía varieties in the two studied bioclimatic regions of Ribeiro and Ribeira Sacra.


2005 ◽  
Vol 93 (9-10) ◽  
Author(s):  
Dorothea Schumann ◽  
R. Grasser ◽  
R. Dressler ◽  
H. Bruchertseifer

SummaryA new device was developed for the identification of several iodine species in aqueous solution using ion chromatography. Iodide, iodate and molecular iodine can be determined. (The equipment allows both conductivity and radioactivity detections.) The method is applicable for the determination of radioactive iodine contaminations in the cooling water of nuclear power plants.


2021 ◽  
Vol 66 (3) ◽  
Author(s):  
Dipriya R. Lyngkhoi

The present study was undertaken to estimate the costs and returns structure of maize cultivation and identifying the prominent production constraints in West Khasi Hills district of Meghalaya. A sample of 60 farmers was randomly drawn from six villages of Mawthadraishan and Nongstoin block of the selected district. The costs and returns per hectare were calculated on the basis of cost concepts and Garett ranking method was used for employed for determination of constraints in maize production. The overall cost of cultivation was found to be ` 37185.22 per ha and the major cost components were manures (48.25%) and human labour (34.73%). The overall net return was evaluated at ` 19038.20 with small, medium and large farmers having similar returns with the exception of marginal farmers gaining a net return of only ` 13889.83 which was 27.04 per cent lower than the average return among the sample farmers. It may be attributed to their heavy dependence on labour and lack of investment on irrigation, plant protection and better-quality seeds. The realised average yield was found to be 23.65 q/ha which was abysmally low compared to other maize producing states of India. A positive trend between the return over cost ratio and the operational holding was observed with an average of 1.51. The prominent constraints as perceived by the farmers were unfavorable weather conditions, the incidence of pests and diseases and costly fertilizers and manures with the Garrett’s score of 64.70, 62.75 and 54.40 respectively


2021 ◽  
Vol 66 (6) ◽  
pp. 102-110
Author(s):  
A. Molokanov ◽  
B. Kukhta ◽  
E. Maksimova

Purpose: Harmonization and improvement of the system for regulating the internal radiation exposure of workers and the basic requirements for ensuring radiation safety with international requirements and recommendations. Material and methods: Issues related to the development of approaches to regulation and monitoring of workers for internal radiation exposure in the process of evolution of the ICRP recommendations and the national radiation safety standards, are considered. The subject of analysis is the standardized values: dose limits for workers and permissible levels as well as directly related methods of monitoring of workers for internal radiation exposure, whose purpose is to determine the degree of compliance with the principles of radiation safety and regulatory requirements, including non-exceeding the basic dose limits and permissible levels. The permissible levels of inhalation intake of insoluble compounds (dioxide) of plutonium-239 are considered as a numerical example. Results: Based on the analysis of approaches to the regulation and monitoring of workers for internal radiation exposure for the period from 1959 to 2019, it is shown that a qualitative change in the approach occurred in the 1990s. It was due to a decrease in the number of standardized values by introducing a single dose limit for all types of exposure: the effective dose E, which takes into account the different sensitivity of organs and tissues for stochastic radiation effects (WT), using the previously accepted concepts of the equivalent dose H and groups of critical organs. From the analysis it follows that the committed effective dose is a linear transformation of the intake, linking these two quantities by the dose coefficient, which does not depend on the time during which the intake occurred, and reflects certain exposure conditions of the radionuclide intake (intake routes, parameters of aerosols and type of radionuclide compounds). It was also shown that the reference value of the function z(t) linking the measured value of activity in an organ (tissue) or in excretion products with the committed effective dose for a reference person, which is introduced for the first time in the publications of the ICRP OIR 2015-2019, makes it possible to standardize the method of measuring the normalized value of the effective dose. Based on the comparison of the predicted values of the lung and daily urine excretion activities following constant chronic inhalation intake of insoluble plutonium compounds at a rate equal annual limit of intake (ALI) during the period of occupational activity 50 years it was shown that the modern biokinetic models give a slightly lower level (on average 2 times) of the lungs exposure compared to the models of the previous generation and a proportionally lower level (on average 1.4 times) of plutonium urine excretion for the standard type of insoluble plutonium compounds S. However, for the specially defined insoluble plutonium compound, PuO2, the level of plutonium urine excretion differs significantly downward (on average 11.5 times) compared to the models of the previous generation. Conclusion: With the practical implementation of new ICRP OIR models, in particular for PuO2 compounds, additional studies should be carried out on the behavior of insoluble industrial plutonium compounds in the human body. Besides, additional possibilities should be used to determine the intake of plutonium by measuring in the human body the radionuclide Am-241, which is the Pu-241 daughter. To determine the plutonium urine excretion, the most sensitive measurement techniques should be used, having a decision threshold about fractions of mBq in a daily urine for S-type compounds and an order of magnitude lower for PuO2 compounds. This may require the development and implementation in monitoring practice the plutonium-DTPA Biokinetic Model.


1982 ◽  
Vol 99 (1) ◽  
pp. 64-71 ◽  
Author(s):  
Jens Faber ◽  
lb Bo Lumholtz ◽  
Carsten Kirkegaard ◽  
Kaj Siersbæk-Nielsen ◽  
Thorkild Friis

Abstract. A method based on the principle of gel separation followed by antibody extraction (GSAE) has been developed for isolation of radioactive thyroxine (T4), 3,5,3'-triiodothyronine (T3), 3,3',5'-triiodothyronine (rT3), 3,3'-diiodothyronine (3,3'-T2), 3',5'-diiodothyronine (3',5'-T2) and 3'-monoiodothyronine (3'-T1) in serum. This method was used for the estimation of the metabolic clearance rate (MCR) of the iodothyronines using the single injection, non-compartmental approach, and was compared to the conventional trichloroacetic acid precipitation/ethanol extraction (TCA-E) technique. The GSAE method excluded the co-determination of radioactive iodine and iodoproteins, whereas the co-determination of radiolabelled daughter iodothyronines was found negligible. The relative difference of duplicate estimations of MCR was approximately 10%. Using the TCA-E method for isolation of tracer, the MCR of T4, T3 and rT3 was underestimated to a minor degree (20%), whereas the MCRs of 3,3'-T2, 3',5'-T2 and 3'-T1 were 20–40% of those estimated by the GSAE method. In conclusion the GSAE method was found suitable for kinetic studies of iodothyronines, whereas the TCA-E method cannot be used for turnover studies of 3,3'-T2, 3',5'-T2 or 3'-T1.


Sign in / Sign up

Export Citation Format

Share Document