scholarly journals Influence of Different Peritoneal Dialysis Fluids on theIn VitroActivity of Cefepime, Ciprofloxacin, Ertapenem, Meropenem and Tobramycin againstEscherichia Coli

2016 ◽  
Vol 36 (6) ◽  
pp. 662-668 ◽  
Author(s):  
Manuel Kussmann ◽  
Linda Schuster ◽  
Sarah Wrenger ◽  
Petra Pichler ◽  
Gottfried Reznicek ◽  
...  

BackgroundPeritonitis is a major problem among patients on peritoneal dialysis (PD). The influence of diverse PD fluids on the activity of frequently used antibiotics has been insufficiently investigated. Thus, the present study set out to investigate the impact of different PD fluids on the activity of cefepime, ciprofloxacin, ertapenem, meropenem, and tobramycin against Escherichia coli.MethodsTime-kill curves in 4 different PD fluids (Dianeal PDG4, Extraneal, Nutrineal PD4 and Physioneal 40, all Baxter Healthcare Corp., Deerfield, IL, USA) were performed over 24 hours with 4 different concentrations (1 x minimum inhibitory concentration [MIC], 4 x MIC, 8 x MIC, 30 x MIC) of each antibiotic evaluated and without antibiotics as control. Cation-adjusted Mueller Hinton broth (CA-MHB) was used as comparator solution.ResultsIn all PD fluids investigated, bacterial growth and antimicrobial activity of all antibiotics tested was significantly reduced compared with the CA-MHB comparator solution. Except at high concentrations of 30 x MIC, cefepime, ertapenem and meropenem demonstrated a strongly reduced activity in all PD fluids investigated. Ciprofloxacin and tobramycin were highly active and bactericidal in all PD fluids and demonstrated dose-dependent activity.ConclusionThe antimicrobial activity of cefepime, ertapenem and meropenem is limited or even nullified in certain PD fluids in vitro, whereas ciprofloxacin and tobramycin show excellent activity. The choice of PD fluids can impact the activity of antimicrobial agents and might influence microbiological outcome. Further studies are required to verify the clinical relevance of our findings.

2019 ◽  
Vol 15 (1) ◽  
pp. 63-70
Author(s):  
Shiv Dev Singh ◽  
Arvind Kumar ◽  
Firoz Babar ◽  
Neetu Sachan ◽  
Arun Kumar Sharma

Background: Thienopyrimidines are the bioisoster of quinazoline and unlike quinazoline exist in three isomeric forms corresponding to the three possible types annulation of thiophene to the pyrimidine ring viz thieno[2,3-d] pyrimidine, thieno[3,2-d] pyrimidine and thieno[3,4-d]pyrimidine. Heterocyclic containing the thienopyrimidinone moiety exhibits various pronounced activities such as anti-hypertensive, analgesic and anti-inflammatory, antiviral, platelet aggregation inhibitory, antiprotozoal bronchodilatory, phosphodiesterase inhibitory, antihistaminic, antipsychotic and antimicrobial activity. Objective: Synthesis of novel 3(N,N-dialkylamino)alkyl/phenyl substituted thieno[2,3-d]pyrimidinones as H1-anti-histaminic and antimicrobial agents. Methods: A series of 3-[(N,N-dialkylamino)alkyl/phenyl]-2-(1H)thioxo-5,6,7,8-tetrahydrobenzo(b) thieno(2,3-d)pyrimidine-4(3H)-ones[4a-d], their oxo analogous [5a-d] and 3-[(N,N-dialkylamino)alkyl]- 2-chlorophenyl-5,6,7,8-tetrahydrobenzo(b)thieno(2,3-d)pyrimidine- 4 (3H)-ones[6a-d]derivative were synthesized from 2-amino-4,5,6,7-tetrahydrobenzo(b)thiophene-3-carboxylic acid by nucleophilic substitution of different N,N-dialkyl alkylene/phenylene diamines on activated 3-acylchloride moiety followed by cyclocondensation with carbon disulfide and ethanolic potassium hydroxide to get [4a-d] and in second reaction by condensation with 4-chlorobenzoyl chloride to get [6a-d] by single pot novel innovative route. The oxo analogous [5a-d] were prepared by treating derivatives [4a-d] with potassium permagnate in ethanolic KOH. The synthesized compound were evaluated for H1-antihistaminic and antimicrobial activities. Results: All synthesized compounds exhibited significant H1-antihistaminic activity by in vitro and in vivo screening methods and data were verified analytically and statistically. The compound 4a, 4b, 5a and 5b showed significant H1-antihistaminiic activity than the reference standard chlorpheniramine maleate. The compound 6d, 6c, 5c and 4c exhibited significant antimicrobial activity.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4383
Author(s):  
Barbara Lapinska ◽  
Aleksandra Szram ◽  
Beata Zarzycka ◽  
Janina Grzegorczyk ◽  
Louis Hardan ◽  
...  

Modifying the composition of dental restorative materials with antimicrobial agents might induce their antibacterial potential against cariogenic bacteria, e.g., S.mutans and L.acidophilus, as well as antifungal effect on C.albicans that are major oral pathogens. Essential oils (EOs) are widely known for antimicrobial activity and are successfully used in dental industry. The study aimed at evaluating antibacterial and antifungal activity of EOs and composite resin material (CR) modified with EO against oral pathogens. Ten EOs (i.e., anise, cinnamon, citronella, clove, geranium, lavender, limette, mint, rosemary thyme) were tested using agar diffusion method. Cinnamon and thyme EOs showed significantly highest antibacterial activity against S.mutans and L.acidophilus among all tested EOs. Anise and limette EOs showed no antibacterial activity against S.mutans. All tested EOs exhibited antifungal activity against C.albicans, whereas cinnamon EO showed significantly highest and limette EO significantly lowest activity. Next, 1, 2 or 5 µL of cinnamon EO was introduced into 2 g of CR and microbiologically tested. The modified CR showed higher antimicrobial activity in comparison to unmodified one. CR containing 2 µL of EO showed the best antimicrobial properties against S.mutans and C.albicans, while CR modified with 1 µL of EO showed the best antimicrobial properties against L.acidophilus.


2015 ◽  
Vol 59 (4) ◽  
pp. 2113-2121 ◽  
Author(s):  
U. Malik ◽  
O. N. Silva ◽  
I. C. M. Fensterseifer ◽  
L. Y. Chan ◽  
R. J. Clark ◽  
...  

ABSTRACTStaphylococcus aureusis a virulent pathogen that is responsible for a wide range of superficial and invasive infections. Its resistance to existing antimicrobial drugs is a global problem, and the development of novel antimicrobial agents is crucial. Antimicrobial peptides from natural resources offer potential as new treatments against staphylococcal infections. In the current study, we have examined the antimicrobial properties of peptides isolated from anuran skin secretions and cyclized synthetic analogues of these peptides. The structures of the peptides were elucidated by nuclear magnetic resonance (NMR) spectroscopy, revealing high structural and sequence similarity with each other and with sunflower trypsin inhibitor 1 (SFTI-1). SFTI-1 is an ultrastable cyclic peptide isolated from sunflower seeds that has subnanomolar trypsin inhibitory activity, and this scaffold offers pharmaceutically relevant characteristics. The five anuran peptides were nonhemolytic and noncytotoxic and had trypsin inhibitory activities similar to that of SFTI-1. They demonstrated weakin vitroinhibitory activities againstS. aureus, but several had strong antibacterial activities againstS. aureusin anin vivomurine wound infection model. pYR, an immunomodulatory peptide fromRana sevosa, was the most potent, with complete bacterial clearance at 3 mg · kg−1. Cyclization of the peptides improved their stability but was associated with a concomitant decrease in antimicrobial activity. In summary, these anuran peptides are promising as novel therapeutic agents for treating infections from a clinically resistant pathogen.


Author(s):  
Aseel Alsarahni ◽  
Zuhair Muhi Eldeen ◽  
Elham Al-kaissi ◽  
Ibrahim Al- Adham ◽  
Najah Al-muhtaseb

<p><strong>Objective: </strong>To design and synthesize amino acetylenic and thiocarbonate of 2-mercapto-1,3-benthiazoles as potential antimicrobial agents.</p><p><strong>Methods: </strong>A new series of 2-{[4-(t-amino-1-yl) but-2-yn-1-yl] sulfanyl}-1,3-benzothiazole derivatives (AZ1-AZ6), and S-1,3-benzothiazol-2-yl-O-alkyl carbonothioate derivatives were synthesised, with the aim that the target compounds show new and potential antimicrobial activity. The elemental analysis was indicated by the EuroEA elemental analyzer, and biological characterization was via IR, <sup>1</sup>H-NMR, [13]C-NMR, DSC were determined with the aid of Bruker FT-IR and Varian 300 MHz spectrometer using DMSO-d<sub>6</sub> as a solvent.<em> </em><em>In vitro </em>antimicrobial activity, evaluation was done for the synthesised compounds, by agar diffusion method and broth dilution test. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) were determined. <em></em></p><p><strong>Results: </strong>The IR, <sup>1</sup>H-NMR, <sup>13</sup>C-NMR, DSC and elemental analysis were consistent with the assigned structures. Compound of 2-{[4-(4-methylpiperazin-1-yl)but-2-yn-1-yl] sulfanyl}-1,3-benzothiazole (AZ1), 2-{[4-(2-methylpiperidin-1-yl)but-2-yn-1-yl]sulfanyl}-1,3-benzothiazole (AZ2), 2-{[4-(piperidin-1-yl) but-2-yn-1-yl]sulfanyl}-1, 3-benzothiazole (AZ6), S-1,3-benzothiazol-2-yl-O-ethyl carbonothioate (AZ7), and S-1,3-benzothiazol-2-yl-O-(2-methylpropyl) carbonothioate (AZ9) showed the highest antimicrobial activity against <em>Pseudomonas aeruginosa </em>(<em>P. aeruginosa</em>), AZ-9 demonstrated the highest antifungal activity against <em>Candida albicans </em>(<em>C. albicans</em>), with MIC of 31.25 µg/ml.</p><p><strong>Conclusion: </strong>These promising results promoted our interest to investigate other structural analogues for their antimicrobial activity further.</p>


2021 ◽  
Vol 11 (6) ◽  
pp. 888-903
Author(s):  
Hanan Alghamdi ◽  
Syed Nazreen ◽  
Ahmed A. Elhenawy ◽  
Mohamed Abdelbaset

The antimicrobial resistance is a global human threat which has led to the withdrawal of antibiotics from the market. Therefore, it is a need to develop new and effective antimicrobial agents to overcome this problem. In this paper, new Dioxovanadium(V) complexes (1–8) with ligands viz. (2-(5-phenyl-1,3,4-oxadiazole-2-yl)phenol; L1) and 2,5-bis(2-hydroxyphenyl)-1,3,4-oxadiazole (L2) were synthesized and assessed for antimicrobial-activity. Both a bidentate and tetradentate oxadiazole ligands coordinate with vanadium ions through the nitrogen and oxygen atoms giving octahedral geometries. Thermal analysis and IR data confirmed the presence of hydrated water in the metal-complexes. The investigated compounds were assessed for antimicrobial viz four strains of bacterial and one a fungal strain. The antibacterial data showed that, the complexes (1–8) are lower potency against bacterial strain than the free ligands except (5) and (7) complexes. These complexness showed the highest antibacterial potency via the Staphylococcus aureus. All investigated compounds were inactive against C. albicans except complexes 2 and 5 which showed high activity. The performance of DFT was conducted to examine an interaction mode of the target compounds with biological system. The QSPR was calculated as: optimization geometries, (FMOs), and chemical-reactivities for the synthesized compounds. The (MEPs) were figured to predict the interaction behavior of the ligand and its complexes against the receptor. The molecular docking was performed against DNA gyrase to study the interaction mode with biological system.


2021 ◽  
Vol 17 ◽  
Author(s):  
Dnyaneshwar T. Nagre ◽  
Bapu R. Thorat ◽  
Suraj N. Mali ◽  
Mazhar Farooqui ◽  
Brijmohan Agrawal

Background: A series of bis(indolyl)methanes (3a-3o) have been synthesized using a greener and new approach using the reaction of different substituted aldehydes and indole in the presence of an easily available and biodegradable base such as piperidine in acetic acid at room temperature and characterized with UV (Ultraviolet-visible spectroscopy), Gas chromatography-mass spectrometry (GC-MS), Proton nuclear magnetic resonance (H-NMR), and Fourier transform infrared spectroscopy (FTIR). Methods: All 15 newly synthesized compounds (3a-3o) were subjected to in-vitro anti-microbial activity determination and compared with the known standard drug ciprofloxacin (1-2 µg/mL). Our in-silico analysis on the target protein, pdb id: 1d7u suggested that these analogues would be highly active against bacterial targets and thus, would act as good antimicrobial agents. Results: All 15 newly synthesized compounds (3a-3o) displayed potent activity on various experimental microbial strains (1.0-1.4 µg/mL). Compound, 3k was obtained as the best docked compound against common bacterial target enzyme, (pdb id:1d7u). The standard, Ciprofloxacin, retained the docking score of -111.3 Kcal/mol with similar binding amino acid residues (LYS272 (Pi-cation); ALA A:245 (Pi-sigma); TRP A:138 (Pi-Pi); ALA A:112; and MET A:141 (Pi-alkyl)) as of inbound. Conclusion : We believe that our current study would shed more light on the development of potent bis(indolyl)methanes as antimicrobial agents.


1996 ◽  
Vol 40 (11) ◽  
pp. 2671-2672 ◽  
Author(s):  
L Martínez-Martínez ◽  
A Pascual ◽  
K Bernard ◽  
A I Suárez

The in vitro activities of 16 antimicrobial agents against 86 strains of Corynebacterium striatum were evaluated by microdilution using cation-adjusted Mueller-Hinton broth. MICs at which 90% of strains were inhibited were 0.06 microgram/ml for teicoplanin, 1 microgram/ml for vancomycin, 0.03 to 8 micrograms/ml for beta-lactams, 8 micrograms/ml for sparfloxacin, 16 micrograms/ml for ciprofloxacin, 16/304 micrograms/ml for co-trimoxazole (trimethoprim-sulfamethoxazole), 64 micrograms/ml for tetracycline, 128 micrograms/ml for gentamicin, and > 128 micrograms/ml for amikacin, erythromycin, and rifampin.


1988 ◽  
Vol 8 (4) ◽  
pp. 277-279
Author(s):  
Wendy L. Vaudry ◽  
Claudia Gratton ◽  
Kinga Kowalewska ◽  
Wanda M. Wenman

The minimum inhibitory concentration (MIC) of daptomycin was compared with that of four other antimicrobial agents against clinically relevant staphylococci. Sixtyfive isolates were obtained from patients on continuous ambulatory peritoneal dialysis (CAPD) who contracted peritonitis. These isolates comprised 29 S. Sureus strains (all sensitive to oxacillin); 25 S. epidermidis strains (14 sensitive and 9 resistant to oxacillin); and 11 unspeciated coagulase-negative staphylococci (2 sensitive and 11 resistant to oxacillin). All of the oxacillin susceptible strains were inhibited by ≤2 mg/L of the five antibiotics tested. The oxacillin resistant staphylococci were also resistant to cefuroxime and variably resistant to cefamandole, but were uniformly susceptible to both vancomycin and daptomycin. Daptomycin possesses equivalent in vitro activity to vancomycin against strains of S. Sureus and coagulase negative staphylococci associated with CAPD peritonitis. If vancomycin resistance becomes a significant problem in these patients, and daptomycin is shown to be active against vancomycin resistant organisms, then it would have potential usefulness as an alternative to vancomycin in the treatment of peritonitis caused by multiply -resistant staphylococci.


2001 ◽  
Vol 21 (2) ◽  
pp. 201-207 ◽  
Author(s):  
Janusz Witowski ◽  
Thorsten O. Bender ◽  
Gerhard M. Gahl ◽  
Ulrich Frei ◽  
Achim Jörres

Background The bioincompatibility of peritoneal dialysis fluids (PDF) in current use has been partially attributed to the presence of glucose degradation products (GDPs), which are generated during heat sterilization of PDF. Several of the GDPs have been identified and we have recently demonstrated that these GDPs per se may impair the viability and function of human peritoneal mesothelial cells (HPMC) in vitro. It is also possible that GDP-related toxicity is further exacerbated by the milieu of PDF. We review the current literature on GDP and present the results of experiments comparing the impact of heat- and filter-sterilized PDF on the viability and function of HPMC. Methods Peritoneal dialysis fluids with low (1.5%) and high (4.25%) glucose concentrations were laboratory prepared according to the standard formula and sterilized either by heat (H-PDF; 121°C, 0.2 MPa, 20 minutes) or filtration (F-PDF; 0.2 μ). The buildup of GDP was confirmed by UV absorbance at 284 nm. Confluent HPMC monolayers were exposed to these solutions mixed 1:1 with standard M199 culture medium. After 24 hours, cell viability was assessed with the MTT assay, and interleukin-1β–stimulated monocyte chemotactic protein-1 (MCP-1) release with specific immunoassay. Results Exposure of HPMC to H-PDF resulted in a significant decrease in cell viability, with solutions containing 4.25% glucose being more toxic than 1.5% glucose-based PDF (27.4% ± 3.4% and 53.4% ± 11.0% of control values, respectively). In contrast, viability of HPMC exposed to F-PDF was not different from that of control cells. Moreover, treatment with H-PDF impaired the release of MCP-1 from HPMC to a significantly greater degree compared to F-PDF (17.4% and 24.9% difference for low and high glucose PDF, respectively). Conclusions Exposure of HPMC to H-PDF significantly impairs cell viability and the capacity for generating MCP-1 compared to F-PDF. This effect is likely to be mediated by GDPs present in H-PDF but not in F-PDF.


Antibiotics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 188 ◽  
Author(s):  
Alberto Antonelli ◽  
Luca Giovannini ◽  
Ilaria Baccani ◽  
Valentina Giuliani ◽  
Riccardo Pace ◽  
...  

The recent increase in infections mediated by drug-resistant bacterial and fungal pathogens underlines the urgent need for novel antimicrobial compounds. In this study, the antimicrobial activity (inhibitory and cidal) of HybenX®, a novel dessicating agent, in comparison with commonly used sodium hypochlorite and chlorhexidine, against a collection of bacterial and yeast strains representative of the most common human pathogenic species was evaluated. The minimal inhibitory, bactericidal, and fungicidal concentrations (MIC, MBC, and MFC, respectively) of the three different antimicrobial agents were evaluated by broth microdilution assays, followed by subculturing of suitable dilutions. HybenX® was active against 26 reference strains representative of staphylococci, enterococci, Enterobacterales, Gram-negative nonfermenters, and yeasts, although at higher concentrations than sodium hypochlorite and chlorhexidine. HybenX® MICs were 0.39% for bacteria (with MBCs ranging between 0.39% and 0.78%), and 0.1–0.78% for yeasts (with MFCs ranging between 0.78% and 1.6%). HybenX® exhibited potent inhibitory and cidal activity at low concentrations against several bacterial and yeast pathogens. These findings suggest that HybenX® could be of interest for the treatment of parodontal and endodontic infections and also for bacterial and fungal infections of other mucous membranes and skin as an alternative to sodium hypochlorite and chlorhexidine.


Sign in / Sign up

Export Citation Format

Share Document