scholarly journals Antibacterial Activity of (+) Usnic Acid against Multi Drug Resistant Acinetobacter baumannii from Clinical Isolates

2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S662-S662
Author(s):  
Alita Miller ◽  
Sarah McLeod ◽  
Samir Moussa ◽  
Meredith Hackel

Abstract Background The incidence of infections caused by multidrug-resistant (MDR) Acinetobacter baumannii (Ab) is increasing at an alarming rate in certain regions of the world, including the Middle East. Sulbactam (SUL) has intrinsic antibacterial activity against Ab; however, the prevalence of β-lactamases in Ab has limited its therapeutic utility. Durlobactam (DUR, formerly ETX2514) is a diazabicyclooctenone β-lactamase inhibitor with broad-spectrum activity against Ambler class A, C and D β-lactamases that restores SUL activity in vitro against MDR Ab. SUL-DUR is an antibiotic designed to treat serious infections caused by Acinetobacter, including multidrug-resistant strains, that is currently in Phase 3 clinical development. In global surveillance studies of >3600 isolates from 2012-2017, the MIC90 of SUL-DUR was 2 mg/L. Although surveillance systems to monitor MDR infections in the Middle East are currently being established, quantitative, prevalence-based data are not yet available. Therefore, the potency of SUL-DUR was determined against 190 recent, diverse Ab clinical isolates from this region. Methods 190 Ab isolates were collected between 2016 - 2018 from medical centers located in Israel (N = 47), Jordan (N = 36), Qatar (N = 13), Kuwait (N = 42), Lebanon (N = 8), Saudi Arabia (N = 24) and United Arab Emirates (N = 20). Seventy-five percent and 20.5% of these isolates were from respiratory and blood stream infections, respectively. Susceptibility to SUL-DUR and comparator agents was performed according to CLSI guidelines, and data analysis was performed using CLSI and EUCAST breakpoint criteria where available. Results This collection of isolates was 86% carbapenem-resistant and 90% sulbactam-resistant (based on a breakpoint of 4 mg/L). The addition of SUL-DUR (fixed at 4 mg/L) decreased the sulbactam MIC90 from 64 mg/L to 4 mg/L. Only 3 isolates (1.6%) had SUL-DUR MIC values of > 4 mg/L. This potency was consistent across countries, sources of infection and subsets of resistance phenotypes. Conclusion SUL-DUR demonstrated potent antibacterial activity against recent clinical isolates of Ab from the Middle East, including MDR isolates. These data support the global development of SUL-DUR for the treatment of MDR Ab infections. Disclosures Alita Miller, PhD, Entasis Therapeutics (Employee) Sarah McLeod, PhD, Entasis Therapeutics (Employee) Samir Moussa, PhD, Entasis Therapeutics (Employee)


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Amit Gaurav ◽  
Varsha Gupta ◽  
Sandeep K. Shrivastava ◽  
Ranjana Pathania

AbstractThe increasing prevalence of antimicrobial resistance has become a global health problem. Acinetobacter baumannii is an important nosocomial pathogen due to its capacity to persist in the hospital environment. It has a high mortality rate and few treatment options. Antibiotic combinations can help to fight multi-drug resistant (MDR) bacterial infections, but they are rarely used in the clinics and mostly unexplored. The interaction between bacteriostatic and bactericidal antibiotics are mostly reported as antagonism based on the results obtained in the susceptible model laboratory strain Escherichia coli. However, in the present study, we report a synergistic interaction between nalidixic acid and tetracycline against clinical multi-drug resistant A. baumannii and E. coli. Here we provide mechanistic insight into this dichotomy. The synergistic combination was studied by checkerboard assay and time-kill curve analysis. We also elucidate the mechanism behind this synergy using several techniques such as fluorescence spectroscopy, flow cytometry, fluorescence microscopy, morphometric analysis, and real-time polymerase chain reaction. Nalidixic acid and tetracycline combination displayed synergy against most of the MDR clinical isolates of A. baumannii and E. coli but not against susceptible isolates. Finally, we demonstrate that this combination is also effective in vivo in an A. baumannii/Caenorhabditis elegans infection model (p < 0.001)


2020 ◽  
Vol 9 (40) ◽  
Author(s):  
Peechanika Chopjitt ◽  
Thidathip Wongsurawat ◽  
Piroon Jenjaroenpun ◽  
Parichart Boueroy ◽  
Rujirat Hatrongjit ◽  
...  

ABSTRACT Here, we report the complete genome sequences of four clinical isolates of extensively drug-resistant Acinetobacter baumannii (XDRAB), isolated in Thailand. These results revealed multiple antimicrobial-resistant genes, each involving two sequence type 16 (ST16) isolates, ST2, and a novel sequence type isolate, ST1479.


2014 ◽  
Vol 9 (8) ◽  
pp. 1934578X1400900 ◽  
Author(s):  
Courtney M. Starks ◽  
Vanessa L. Norman ◽  
Russell B. Williams ◽  
Matt G. Goering ◽  
Stephanie M. Rice ◽  
...  

One new and seven known diterpenes were identified from an antibacterial chromatographic fraction of Taxodium ascendens. Of these, demethylcryptojaponol (2), 6-hydroxysalvinolone (3), hydroxyferruginol (4), and hinokiol (5) demonstrated potent activity against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). These compounds represent a class of synthetically accessible compounds that could be further developed for treatment of drug-resistant bacterial infections.


2020 ◽  
Author(s):  
Bahare Salehi ◽  
Zohreh Ghalavand ◽  
Abbas Yadegar ◽  
Gita Eslami

Abstract Background: This study aimed to characterize the regulation and expression of three putative resistance-nodulation-cell division (RND)-type efflux systems and their contribution to multidrug efflux in clinical isolates of Acinetobacter baumannii. Methods: Antimicrobial susceptibility testing (AST) of 95 A. baumannii isolates was determined by Kirby-Bauer disk diffusion for 18 antibiotics and minimum inhibitory concentration (MIC) of colistin was determined by broth microdilution method. Moreover, MIC of five classes of antibiotics was assessed using E-test strips in the presence and absence of phenylalanine-arginine beta-naphthylamide (PAβN). Regulatory genes of RND efflux pumps (AdeRS, AdeL, AdeN and BaeSR) were subjected to sequencing. The relative expression of adeB. adeG and adeJ genes was determined by quantitative real-time PCR (RT-PCR).Results: Overall, majority of isolates (93%) were extensively drug-resistant (XDR). In the phenotypic assay, efflux pump activity was observed in 40% of isolates against multiple antibiotics mainly tigecycline, but not to imipenem. Several amino acid substitutions were detected in the regulatory genes; except in AdeN. Of note, G186V in AdeS were found to be associated with overexpression of their relative efflux pumps. No insertion sequences (ISs) were detected. Conclusions: Our findings outline the role of RND efflux pumps in resistance of A. baumannii against multiple antibiotics particularly tigecycline, and point out importance of a variety of single mutations in the corresponding regulatory systems. Even though it has been concluded that multidrug resistance occurs as a result of a complex sets of different resistant mechanisms.


2020 ◽  
Author(s):  
Bahare Salehi ◽  
Zohreh Ghalavand ◽  
Abbas Yadegar ◽  
Gita Eslami

Abstract Background: This study aimed to characterize the regulation and expression of three putative resistance-nodulation-cell division (RND)-type efflux systems and their contribution to multidrug efflux in clinical isolates of Acinetobacter baumannii.Methods: Antimicrobial susceptibility testing (AST) of 95 A. baumannii isolates was determined by Kirby-Bauer disk diffusion for 18 antibiotics and minimum inhibitory concentration (MIC) of colistin was determined by broth microdilution method. Moreover, MIC of five classes of antibiotics was assessed using E-test strips in the presence and absence of phenylalanine-arginine beta-naphthylamide (PAβN). Regulatory genes of RND efflux pumps (AdeRS, AdeL, AdeN and BaeSR) were subjected to sequencing. The relative expression of adeB. adeG and adeJ genes was determined by quantitative real-time PCR (RT-PCR).Results: Overall, majority of isolates (93%) were extensively drug-resistant (XDR). In the phenotypic assay, efflux pump activity was observed in 40% of isolates against multiple antibiotics mainly tigecycline, but not to imipenem. Several amino acid substitutions were detected in the regulatory genes; except in AdeN. Of note, G186V in AdeS were found to be associated with overexpression of their relative efflux pumps. No insertion sequences (ISs) were detected.Conclusions: Our findings outline the role of RND efflux pumps in resistance of A. baumannii against multiple antibiotics particularly tigecycline, and point out importance of a variety of single mutations in the corresponding regulatory systems. Even though it has been concluded that multidrug resistance occurs as a result of a complex sets of different resistant mechanisms.


Sign in / Sign up

Export Citation Format

Share Document