Sensorlose Überwachung der Einzelteilfertigung/Spindle-current-based process monitoring using artificial intelligence

2021 ◽  
Vol 111 (05) ◽  
pp. 305-308
Author(s):  
Berend Denkena ◽  
Benjamin Bergmann ◽  
Jonas Becker ◽  
Heiko Blech

Durch die Messung von Spindelströmen lassen sich Informationen aus spanenden Fertigungsprozessen ohne zusätzliche Sensorik erfassen. Diese Daten sind aus der Maschinensteuerung mit geringem Aufwand abrufbar. Jedoch stellt die Klassifikation von Fehlerereignissen bei Einzelteilen ohne Vergleichsdaten eine erhebliche Herausforderung dar. Untersucht wurde die Berechnung von Toleranzgrenzen durch ein neuronales Netzwerk basierend auf den Daten einer Materialabtragssimulation.   Spindle current measurement allows acquiring process information without the need for additional sensors. Digital machine controls allow accessing the data with low effort. However, precise classification of process errors is a non-trivial task, especially for complex, single item workpieces without reference data. This work presents an approach to predict the spindle current and calculate tolerance limits by using a neuronal network based on a material removal simulation.

Thorax ◽  
2010 ◽  
Vol 65 (7) ◽  
pp. 594-599 ◽  
Author(s):  
N. Derichs ◽  
J. Sanz ◽  
T. Von Kanel ◽  
C. Stolpe ◽  
A. Zapf ◽  
...  

2021 ◽  
Vol 1794 (1) ◽  
pp. 012001
Author(s):  
A Alekseev ◽  
O Erakhtina ◽  
K Kondratyeva ◽  
T Nikitin

Author(s):  
Christian Horn ◽  
Oscar Ivarsson ◽  
Cecilia Lindhé ◽  
Rich Potter ◽  
Ashely Green ◽  
...  

AbstractRock art carvings, which are best described as petroglyphs, were produced by removing parts of the rock surface to create a negative relief. This tradition was particularly strong during the Nordic Bronze Age (1700–550 BC) in southern Scandinavia with over 20,000 boats and thousands of humans, animals, wagons, etc. This vivid and highly engaging material provides quantitative data of high potential to understand Bronze Age social structures and ideologies. The ability to provide the technically best possible documentation and to automate identification and classification of images would help to take full advantage of the research potential of petroglyphs in southern Scandinavia and elsewhere. We, therefore, attempted to train a model that locates and classifies image objects using faster region-based convolutional neural network (Faster-RCNN) based on data produced by a novel method to improve visualizing the content of 3D documentations. A newly created layer of 3D rock art documentation provides the best data currently available and has reduced inscribed bias compared to older methods. Several models were trained based on input images annotated with bounding boxes produced with different parameters to find the best solution. The data included 4305 individual images in 408 scans of rock art sites. To enhance the models and enrich the training data, we used data augmentation and transfer learning. The successful models perform exceptionally well on boats and circles, as well as with human figures and wheels. This work was an interdisciplinary undertaking which led to important reflections about archaeology, digital humanities, and artificial intelligence. The reflections and the success represented by the trained models open novel avenues for future research on rock art.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 264
Author(s):  
Kaisa Liimatainen ◽  
Riku Huttunen ◽  
Leena Latonen ◽  
Pekka Ruusuvuori

Identifying localization of proteins and their specific subpopulations associated with certain cellular compartments is crucial for understanding protein function and interactions with other macromolecules. Fluorescence microscopy is a powerful method to assess protein localizations, with increasing demand of automated high throughput analysis methods to supplement the technical advancements in high throughput imaging. Here, we study the applicability of deep neural network-based artificial intelligence in classification of protein localization in 13 cellular subcompartments. We use deep learning-based on convolutional neural network and fully convolutional network with similar architectures for the classification task, aiming at achieving accurate classification, but importantly, also comparison of the networks. Our results show that both types of convolutional neural networks perform well in protein localization classification tasks for major cellular organelles. Yet, in this study, the fully convolutional network outperforms the convolutional neural network in classification of images with multiple simultaneous protein localizations. We find that the fully convolutional network, using output visualizing the identified localizations, is a very useful tool for systematic protein localization assessment.


Author(s):  
Nidhi Rajesh Mavani ◽  
Jarinah Mohd Ali ◽  
Suhaili Othman ◽  
M. A. Hussain ◽  
Haslaniza Hashim ◽  
...  

AbstractArtificial intelligence (AI) has embodied the recent technology in the food industry over the past few decades due to the rising of food demands in line with the increasing of the world population. The capability of the said intelligent systems in various tasks such as food quality determination, control tools, classification of food, and prediction purposes has intensified their demand in the food industry. Therefore, this paper reviews those diverse applications in comparing their advantages, limitations, and formulations as a guideline for selecting the most appropriate methods in enhancing future AI- and food industry–related developments. Furthermore, the integration of this system with other devices such as electronic nose, electronic tongue, computer vision system, and near infrared spectroscopy (NIR) is also emphasized, all of which will benefit both the industry players and consumers.


2017 ◽  
Vol 19 (suppl_6) ◽  
pp. vi181-vi181
Author(s):  
Quin Xie ◽  
Dominick Han ◽  
Kevin Faust ◽  
Kenneth Aldape ◽  
Gelareh Zadeh ◽  
...  

2021 ◽  
pp. 1-10
Author(s):  
Chao Dong ◽  
Yan Guo

The wide application of artificial intelligence technology in various fields has accelerated the pace of people exploring the hidden information behind large amounts of data. People hope to use data mining methods to conduct effective research on higher education management, and decision tree classification algorithm as a data analysis method in data mining technology, high-precision classification accuracy, intuitive decision results, and high generalization ability make it become a more ideal method of higher education management. Aiming at the sensitivity of data processing and decision tree classification to noisy data, this paper proposes corresponding improvements, and proposes a variable precision rough set attribute selection standard based on scale function, which considers both the weighted approximation accuracy and attribute value of the attribute. The number improves the anti-interference ability of noise data, reduces the bias in attribute selection, and improves the classification accuracy. At the same time, the suppression factor threshold, support and confidence are introduced in the tree pre-pruning process, which simplifies the tree structure. The comparative experiments on standard data sets show that the improved algorithm proposed in this paper is better than other decision tree algorithms and can effectively realize the differentiated classification of higher education management.


Author(s):  
Rakesh Kumar ◽  
Avinash M. Jade ◽  
Valadi K. Jayaraman ◽  
Bhaskar D. Kulkarni

A hybrid strategy of using (i) locally linear embedding for nonlinear dimensionality reduction of high dimensional data and (ii) support vector machines for classification of the resultant features is proposed as a robust methodology for process monitoring. Illustrative examples substantiate the methodology vis-à-vis current practice.


Sign in / Sign up

Export Citation Format

Share Document