scholarly journals Gradient cuts and extremal edges in relative depth and figure–ground perception

2015 ◽  
Vol 78 (2) ◽  
pp. 636-646 ◽  
Author(s):  
Tandra Ghose ◽  
Stephen E. Palmer
2017 ◽  
Vol 1 (2) ◽  
pp. 34
Author(s):  
Zulkarnain Zulkarnain ◽  
Nadjadji Anwar

The Research Center and Development of Water (Puslitbang) is currently developing the Submerged Breakwater in shallow sea area (PEGAR). The author is interested to examine the material that easily obtained in the field of RCP concrete cylinder. The observation is how it to be ability in function as submerged breakwater an go green and low cost. The physical model of wave transmission test is how the response to the structure in ability to damping of wave as the breakwater function. In this research breakwater used is submerged breakwater type by using concrete cylinder (buis beton). The purpose from this research is to know how the response of breakwater structure to the waves through it, with some variation of the structure by creating a structure with three variations of the arrangement and freeboard that is the relative depth with the crest width is constant. The wave generated test in this study is using regular waves in wave flume at FTSP Civil Engineering Department of Institute Technology Ten November. From the analysis of the effect of the installation of submerged breakwater by using concrete cylinder to the wave damping value, it can be concluded that the factors that are very influential is the freeboard and the composition of concrete cylinder. Scenario A (rigid vertical massive) is capable of producing the smallest value of kt is 0.33. As for scenario B (rigid horyzontal massive) with a damping value of 0.5, while the scenario C (rigid permeable) is only able to produce kt value of 0.71. Scenario A is better than scenario B and C Because the position of arrangement of A is very good used to damp wave in small or big freeboard conditions.


2020 ◽  
Vol 9 (1) ◽  
pp. 22
Author(s):  
Sathiabama T. T. Thirugnana ◽  
Abu Bakar Jaafar ◽  
Takeshi Yasunaga ◽  
Tsutomu Nakaoka ◽  
Yasuyuki Ikegami ◽  
...  

The Malaysian Government has set a target of achieving 20% penetration of Renewable Energy (RE) in the energy mix spectrum by 2025. In order to get closer to the target, Ocean Thermal Energy Conversion (OTEC) aligned with solar PV, biogas and biomass energy sources must be evaluated and comprehended. Hybrid OTEC systems consisting of energy and water production are currently under research and validation. Therefore, for the construction of a commercial OTEC plant, 1 MW or 2.5 MW, the choice of a strategic location or potential site is vital. In this paper, oceanographic data such as seawater temperature, depth, salinity and dissolved oxygen obtained from the Japan Oceanographic Data Center (JODC) for Semporna, Tawau, Kudat, Pulau Layang-Layang and Pulau Kalumpang in Sabah, Malaysia, are reported. The RE available from the Exclusive Economic Zone (EEZ) on the coast of Sabah was estimated based on the JODC data obtained. There were no remarkable differences in temperatures between the five sites, which were reported as approximately 27 °C at the surface and 7 °C at depths below 600 m. The surface salinities below 100 m at those sites were slightly lower than the deeper waters, where the salinity increased up to approximately 34.5 PSU. Dissolved oxygen data from the Pulau Kalumpang site showed a slight increment to approximately 4.7 mL/L at depth intervals below 50 m, before declining steadily to approximately 1.7 mL/L along with the depth. The temperature-salinity profiles of the Malaysian sites were congruent with those of Palau, Kumejima and Okinawa, but not with that of Fiji, where the salinity profile showed a distinct variation at the relative depth (below 200 m). Estimates of RE using two different methods were used to prove the potential of OTEC in Malaysia.


Author(s):  
Changyu Zhou ◽  
Bo Wang ◽  
Zhigang Sun ◽  
Jilin Xue ◽  
Xiaohua He

High temperature pressure pipes are widely used in power stations, nuclear power plants, and petroleum refinery, which always bear combined effects of high temperature, high pressure, and corrosive media, so the local pits are the most common volume defects in pressure pipe. Due to various reasons, the defects usually appear on the internal or external wall of pipe. In this paper, the dimensions of a defect were characterized as three dimensionless factors: relative depth, relative gradient and relative length. The main objects of study were the pipe with an internal pit and pipe with an external pit. Orthogonal array testing of three factors at four different levels was applied to analyze the sequence of the influence of three parameters. In present study, when the maximum principal strain nearby the location of the defects reaches 2%, the corresponding load is defined as the limit load, which is classified as two kinds of load type: limit pressure and limit bending moment. According to this strain criterion and isochronous stress strain data of P91 steel, the limit load of high temperature pipe with a local pit was determined by using ABAQUS. And in the same load condition of the pipe with the same dimensionless factors, the limit load of the internal defected pipe was compared with that of the external defected pipe. The results of this study can provide a reference for safety assessment and structural integrity analysis of high temperature creep pressure pipe with pit defects.


2007 ◽  
Vol 39 (2) ◽  
pp. 141-150 ◽  
Author(s):  
S. P. Harrison ◽  
S. E. Metcalfe

ABSTRACT Fluctuations in the extent of closed lakes provide a detailed record of regional and continental variations in mean annual water budget. The temporal sequence of hydrological fluctuations during the Holocene in North America has been reconstructed using information from the Oxford Lake-Level Data Bank. This data base includes 67 basins from the Americas north of the equator. Maps of lake status, an index of relative depth, are presented for the period 10,000 to 0 yr BP. The early Holocene was characterised by increasingly arid conditions, which led to widespread low lake levels in the mid-latitudes by 9,000 yr BP. By 6,000 yr BP this zone of low lakes extended from 32o to 51oN. Many of the features of the present day lake-level pattern, particularly high lake levels north of 46oN and along the eastern seaboard, were established by 3.000 yr BP. Four distinctive regional patterns of lake behaviour through time are apparent. Histograms of lake status from 20,000 to 0 yr BP are presented for each of these regions. They illustrate the temporal patterns of lake-level fluctuations on a time scale of 103 — 104 yr. Changes in lake status over North America are interpreted as indicating displacements in major features of the general circulation, specifically the zonal Westerlies and the Equatorial Trough, as reflected by changes in air mass trajectories and hence the position of air mass boundaries over the continent.


2020 ◽  
Author(s):  
D. M. Newbery ◽  
M. Lingenfelder

AbstractTime series data offer a way of investigating the causes driving ecological processes. To test for possible differences in water relations between species of different forest structural guilds, daily stem girth increments (gthi), of 18 trees across six species were regressed individually on soil moisture potential (SMP) and temperature (TEMP), accounting for temporal autocorrelation (in GLS-arima models), and compared between a wet and a dry period. Coefficients were estimates of response in gthi to increasing SMP or TEMP. The best-fitting significant variables were SMP the day before and TEMP the same day. The first resulted in a mix of positive and negative coefficients, the second largely positive ones. Negative relationships for large canopy trees can be interpreted in a reversed causal sense: fast transporting stems depleted soil water and lowered SMP. Positive relationships for understorey trees meant they took up most water at high SMP. The unexpected negative relationships for these understorey trees may have been due to their roots accessing deeper water supplies (SMP being inversely related to that of the surface layer), this influenced by competition with larger neighbour trees. A tree-soil flux dynamics manifold may have been operating. Patterns of mean diurnal girth variation were more consistent among species than, but weakly related to, time-series coefficients, suggesting no simple trait-based differentiation of responses. Expected differences in response to SMP in the wet and dry periods did not support a previous hypothesis for drought and non-drought tolerant understorey guilds. Trees within species showed highly individual responses. Time-series gthi-SMP regressions might be applied as indicators of relative depth of access to water for small trees. Obtaining detailed information on individual tree’s root systems and recording SMP at many depths and locations are needed to get closer to the mechanisms that underlie complex tree-soil water relations in tropical forests.


2019 ◽  
Vol 7 (4) ◽  
pp. 49-56
Author(s):  
Zaven Ter-Martirosyan ◽  
Armen Ter-martirosyan ◽  
Valery DEMYANENKO

The paper provides a quantitative assessment of the deflected mode of foundation stratum of finite width foundation, in the compressible thickness of which there is a slack clay soil layer. A number of criteria for assessing the possibility or impossibility of extruding a slack layer depending on its strength and rheological properties, as well as the relative thickness of the layer to its length (h/l) and the relative depth of the layer (h/d) have been given. Closed analytical solutions are given to determine the rate of Foundation precipitation depending on the rate of extrusion of the weak layer, including taking into account the damped and undamped creep. The analytical solutions in the article are supported by the graphical part made with the help of the Mathcad program. Plots of changes in shear stresses in the layer along the x axis at different distances from the axis and at different values 0, contours of horizontal displacement velocities in the weak layer at different distances from the x axis, plots of horizontal displacement velocities in the middle of the weak layer and plots of horizontal displacement velocities in the weak layer at different distances from the x axis are given. As a calculation model for describing the creep of a slack layer, rheological ones of the soil using power and hyperbolic functions and their modifications have been considered. In addition, most modern rheological models that take into account soil hardening during creep have been considered. Based on these models, the problem is solved by means analytical and numerical methods using the Mathcad PC and the PLAXIS PC according to the Soft Soil Creep model. The graphical part shows the isofields of horizontal displacements for 300 days and 600 days and the corresponding contours of horizontal displacements.


Author(s):  
Birgitta Dresp-Langley ◽  
Marie Monfouga

Pieron's and Chocholle’s seminal psychophysical work predicts that human response time to information relative to visual contrast and/or sound frequency decreases when contrast intensity or sound frequency increases. The goal of this study is to bring to the fore the ability of individuals to use visual contrast intensity and sound frequency in combination for faster perceptual decisions of relative depth (“nearer”) in planar (2D) object configurations on the basis of physical variations in luminance contrast. Computer controlled images with two abstract patterns of varying contrast intensity, one on the left and one on the right, preceded or not by a pure tone of varying frequency, were shown to healthy young humans in controlled experimental sequences. Their task (two-alternative forced-choice) was to decide as quickly as possible which of two patterns, the left or the right one, in a given image appeared to “stand out as if it were nearer” in terms of apparent (subjective) visual depth. The results show that the combinations of varying relative visual contrast with sounds of varying frequency exploited here produced an additive effect on choice response times in terms of facilitation, where a stronger visual contrast combined with a higher sound frequency produced shorter forced-choice response times. This new effect is predicted by cross-modal audio-visual probability summation.


2020 ◽  
Author(s):  
Dhanraj Vishwanath

The prevailing model of 3D vision proposes that the visual system recovers a single objective and internally consistent representation of physical 3D space based on a process of ideal-observer probabilistic inference. A significant challenge for this model has been in explaining the contents of our subjective awareness of visual space. Here I argue that integrating phenomenological observations, empirical data, evolutionary logic and neurophysiological evidence leads to the conjecture that the human conscious awareness of visual space is underwritten by multiple, sometimes mutually inconsistent, spatial encodings. By assessing four primary competencies in the conscious awareness of space, three major types of spatial encodings are conjectured. Among the most primitive of these is proposed to support the competency of the conscious awareness of distance at an ambulatory scale (operationally defined as egocentric distance) and is hypothesised to involve temporal archicortex regions. The second is proposed to support the competency of awareness of object layout and 3D shape without scale (operationally, relative depth), likely instantiated in the ventral visual stream of the neocortex. This encoding is hypothesised to have evolved from more primitive encodings that provide a depth-ordered segmentation of the visual field. The third encoding is proposed to support the competency of fine-grained awareness of intra- and inter-object spatial separation in near space (operationally, scaled or absolute depth) and instantiated in the dorsal visual stream. This encoding is conjectured to underlie the phenomenology of object solidity, spatial separation, tangibility and object realness that is often referred to as stereopsis. The combined effect of the first and third competencies (ambulatory distance and near-space scaled spatial separation) is conjectured to contribute to the feeling of spatial immersion and presence.


Sign in / Sign up

Export Citation Format

Share Document