scholarly journals STUDI PENURUNAN PRESSURE STEAM PADA AUXILIARY BOILER DI MV. SITU MAS YANG MEMPENGARUHI KINERJA MAIN ENGINE

2021 ◽  
Vol 23 (1) ◽  
pp. 81-85
Author(s):  
Darmana Eka ◽  
Muhamad Rusdiantoro ◽  
Agus Saleh

Kasus menurunnya tekanan boiler terjadi di kapal MV. Situ Mas. Hal ini mempengarui kebutuhan steam untuk memanaskan HFO, minyal lumas, dan akomodasi menjadi tidak terpenuhi. Tujuan dari penelitian ini untuk mengetahui penyebab menurunnya tekanan boiler dan cara mengatasinya. Penelitian berdasarkan studi kasus di MV. Situ Mas Metode pengumpulan data diperoleh dengan cara observasi langsung di tempat penelitian, diskusi maupun wawancara dengan crew kapal dan studi pustaka yang bersumber dari instruction manual maupun standard operasional prosedur. Dari data data tersebut kemudian dilakukan analisis dengan pendekatan kualitatif diskriptif. Hasil studi menunjukkan penurunan pressure steam pada auxiliary boiler di MV. Situ Mas disebabkan oleh kegagalan pembakaran akibat bahan bakar boiler jenis HFO yang tercampur air yang berawal dari minyak kotor yang berada didalam Fuel Oil Leak Tank di transfer ke Settling Tank. Hal ini akibat kekurangtepatan analisa pengambilan keputusan yang mengunakan kembali minyak dari fuel oil leak tank. Upaya mengatasi hal tersebut dengan memindah jenis bahan bakar dari HFO ke MDO dan di drain sisa air yang ada di pipa bahan bakar

2018 ◽  
Vol Vol 160 (A2) ◽  
Author(s):  
A Balin ◽  
H Demirel ◽  
E Celik ◽  
F Alarcin

The ship engine room has a structure that meets a number of needs related to administrative conditions. Even if a simple mechanical error is considered to be the addition of human errors into the complex structure of the engine room, it can lead to undetected loss. How the causes and effects of the detected faults affect the system is as important as an effective fault detection system to detect the fault and take immediate action against any possible engine failure. This study reveals the causes of problems occurring in the main engine auxiliary systems including cooling, lubricating, cooling oil and fuel systems, and the extent of these problems affecting the system. While the Decision Making Trial and Evaluation Laboratory supports to identify and analyze the error detection of auxiliary systems with respect to causal effect relation diagram, fuzzy sets deal with the uncertainty in decision-making and human judgements through the DEMATEL. Therefore, fuzzy DEMATEL approach is applied to examine the causes and the weights of the faults and their relation to each other in the auxiliary systems. When we look at the result of the proposed approach, fuel oil pump failures has more impact on the all system and air cooler problems has the second highest place among the all errors.


2021 ◽  
Vol 33 (6) ◽  
pp. 789-797
Author(s):  
Danijela Tuljak-Suban ◽  
Valter Suban

Vessels of the shipping industry produce sludge during the operation of the main engine, various types of auxiliary engines, and the handling of fuel oil on board ships. The sludge can be stored in special tanks and disposed of ashore or burned on board. In the European Union, according to the Port Reception Facilities Directive (EU) 2019/883, ships have to pay a port waste fee for the delivery of ship waste, which is calculated according to the size of the ship. Such an approach does not take into account the capacity of port green waste logistics. In this paper, the case of delivery of ship sludge to ports that are similar in terms of waste logistics capacity is analysed. It is presented as a mathematical game between ships and ports to improve green waste logistics and match the amount of oil sludge that can be discharged from ships to the capacity of ports. The goal of the game is to discourage free-riders, which can occur on both sides, between suppliers and ports. The waste rate can be used as a regulator and incentive that discourages sludge dumping when recycling is not feasible. A model evaluation is proposed using a numerical example.


Author(s):  
Bruce C. Studley ◽  
Victor Fuentes

On November 1, 1998 the Petropower Energia Limitada Project, located adjacent to Petrox’s 84,000 barrel per day (bpd) refinery in Talcahuano, Chile, entered into Commercial Operations. In addition to being the first public/private industrial partnership in Chile, it also was the first to combine petroleum coking technology with cogeneration technology in a single project financing. The project consists of a Delayed Coker Facility, which includes a 12,000 bpd Delayed Coker Unit and a 7,000 bpd Hydrotreating Unit, and a 74 MW (nominal, gross) Cogeneration Facility. The coke produced fuels a Foster Wheeler Circulating Fluidized Bed Boiler (CFB), and the energy produced provides electric power for the Petrox Refinery, the Delayed Coker Facility, and third parties, and high pressure steam for the refinery. The Cogeneration Facility, which consumes 24.8 Tonnes Per Hour of green coke, produces high-pressure steam, demineralized water and electricity for export to the refinery. The cogeneration unit also exports electricity, boiler feedwater and plant air to the Delayed Coker Facility. This leaves approximately 42 MW which is being exported to local third parties and the national grid. Environmentally, the overall project has resulted in a decrease in sulfur dioxide and particulate emissions from the refinery because of emission controls in the CFB, and elimination of burning fuel oil in the old utility system. Overall, the Delayed Coker Facility has permitted Petrox to refine heavier, less costly crudes, and the Hydrotreater Unit produces cleaner gasoline and diesel products. Petrox obtained these benefits without the expenditure of capital on the project, other than a small equity investment. The Cogeneration Facility has, and will continue to provide a long term, environmentally friendly solution to disposal of the high sulfur content coke produced by the coker, and maximizes its value as a high BTU (kilojoule - kJ) fuel for the Cogeneration Facility. The Cogeneration Facility has supplied all the refinery’s utility needs reliably and consistent with its expansion plans. After briefly describing the overall project, this paper places emphasis on the cogeneration plant with a focus on the operational experiences, including fouling, and the reliability improvements undertaken during the plant’s last three years of commercial operation. In addition, O&M costs and an overview of project economics are discussed.


2020 ◽  
Vol 8 (3) ◽  
pp. 183 ◽  
Author(s):  
Kyunghwa Kim ◽  
Gilltae Roh ◽  
Wook Kim ◽  
Kangwoo Chun

The shipping industry is becoming increasingly aware of its environmental responsibilities in the long-term. In 2018, the International Maritime Organization (IMO) pledged to reduce greenhouse gas (GHG) emissions by at least 50% by the year 2050 as compared with a baseline value from 2008. Ammonia has been regarded as one of the potential carbon-free fuels for ships based on these environmental issues. In this paper, we propose four propulsion systems for a 2500 Twenty-foot Equivalent Unit (TEU) container feeder ship. All of the proposed systems are fueled by ammonia; however, different power systems are used: main engine, generators, polymer electrolyte membrane fuel cell (PEMFC), and solid oxide fuel cell (SOFC). Further, these systems are compared to the conventional main engine propulsion system that is fueled by heavy fuel oil, with a focus on the economic and environmental perspectives. By comparing the conventional and proposed systems, it is shown that ammonia can be a carbon-free fuel for ships. Moreover, among the proposed systems, the SOFC power system is the most eco-friendly alternative (up to 92.1%), even though it requires a high lifecycle cost than the others. Although this study has some limitations and assumptions, the results indicate a meaningful approach toward solving GHG problems in the maritime industry.


2019 ◽  
Vol 84 ◽  
pp. 197-204 ◽  
Author(s):  
Haijun Lou ◽  
Yuejiao Hao ◽  
Weiwei Zhang ◽  
Penghao Su ◽  
Fan Zhang ◽  
...  

Atmosphere ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 305 ◽  
Author(s):  
Chunjiang Bai ◽  
Ying Li ◽  
Bingxin Liu ◽  
Zhaoyi Zhang ◽  
Peng Wu

Pollution caused by ship emissions has drawn attention from various countries. Because of the high density of ships in ports, channels, and anchorages and their proximity to the densely populated areas, ship emissions will considerably impact these areas. Herein, a Chinese seagoing ship is selected and a platform is established for monitoring the ship emissions to obtain detailed characteristics of the ship’s nearshore emissions. The ship navigation and pollution emission data are obtained under six complete operating conditions, i.e., berthing, manoeuvring in port, acceleration in a channel, cruising, deceleration before anchoring, and anchoring. This study analyzes the concentrations of the main emission gases (O2, NOX, SO2, CO2, and CO) and the average emission factors (EFs) of the pollution gases (NOX, SO2, CO2, and CO) based on the engine power under different operating conditions. Results show that the change in O2 concentration reflects the load associated with the main engine of the ship. The NOX, SO2, and CO2 emission concentrations are the highest during cruising, whereas the peak CO emission concentration is observed during anchoring. The average EFs of NOX and SO2 based on the power of the main engine are the highest during cruising, and those of CO2 and CO are the highest after anchoring. The ship EFs are different during acceleration and deceleration. By comparing the EFs along the coast of China and the global EFs commonly used to perform the emission inventory calculations in China, the NOX EFs under different operating conditions is observed to be generally lower than the global EFs under the corresponding operating conditions. Furthermore, the SO2 EF is considerably affected by the sulfur content in the fuel oil and the operating conditions of the ship. The average CO2 EFs are higher than the global EFs commonly used during cruising, and the CO EFs are higher than the global EFs under all the conditions. Our results help to supplement the EFs for this type of ship under different operating conditions, resolve the lack of emission data under anchoring conditions, and provide data support to conduct nearshore environmental monitoring and assessment.


Author(s):  
A Balin ◽  
H Demirel ◽  
E Celik ◽  
F Alarcin

The ship engine room has a structure that meets a number of needs related to administrative conditions. Even if a simple mechanical error is considered to be the addition of human errors into the complex structure of the engine room, it can lead to undetected loss. How the causes and effects of the detected faults affect the system is as important as an effective fault detection system to detect the fault and take immediate action against any possible engine failure. This study reveals the causes of problems occurring in the main engine auxiliary systems including cooling, lubricating, cooling oil and fuel systems, and the extent of these problems affecting the system. While the Decision Making Trial and Evaluation Laboratory supports to identify and analyze the error detection of auxiliary systems with respect to causal effect relation diagram, fuzzy sets deal with the uncertainty in decision-making and human judgements through the DEMATEL. Therefore, fuzzy DEMATEL approach is applied to examine the causes and the weights of the faults and their relation to each other in the auxiliary systems. When we look at the result of the proposed approach, fuel oil pump failures has more impact on the all system and air cooler problems has the second highest place among the all errors.


Author(s):  
J.K. Lampert ◽  
G.S. Koermer ◽  
J.M. Macaoy ◽  
J.M. Chabala ◽  
R. Levi-Setti

We have used high spatial resolution imaging secondary ion mass spectrometry (SIMS) to differentiate mineralogical phases and to investigate chemical segregations in fluidized catalytic cracking (FCC) catalyst particles. The oil industry relies on heterogeneous catalysis using these catalysts to convert heavy hydrocarbon fractions into high quality gasoline and fuel oil components. Catalyst performance is strongly influenced by catalyst microstructure and composition, with different chemical reactions occurring at specific types of sites within the particle. The zeolitic portions of the particle, where the majority of the oil conversion occurs, can be clearly distinguished from the surrounding silica-alumina matrix in analytical SIMS images.The University of Chicago scanning ion microprobe (SIM) employed in this study has been described previously. For these analyses, the instrument was operated with a 40 keV, 10 pA Ga+ primary ion probe focused to a 30 nm FWHM spot. Elemental SIMS maps were obtained from 10×10 μm2 areas in times not exceeding 524s.


1997 ◽  
Vol 9 (6) ◽  
pp. 541-565 ◽  
Author(s):  
Cheryl R. Killingsworth ◽  
Francesca Alessandrini ◽  
G. G. Krishna Murthy ◽  
Paul J. Catalano ◽  
Joseph D. Paulauskis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document