scholarly journals Chemical synthesis of nanostructured magnetic hardened alloy of the Nd-Fe-B system

2021 ◽  
Vol 12 (2-2021) ◽  
pp. 11-13
Author(s):  
O. E. Abdurakhmonov ◽  
◽  
M. E. Alisultanov ◽  
E. V. Yurtov ◽  
◽  
...  

Hard magnetic nanopowders of the Nd15Fe78B7 alloy were synthesized from mixtures of Nd, Fe and Fe-B oxides with CaH2 in a hydrogen atmosphere at 800 °C by a reduction-diffusion process. Nd, Fe, Fe-B oxides were synthesized by chemical deposition. The resulting particles had a granular shape with an average size: Nd2O3 — 50 nm, Fe2O3 — 95 nm, Fe3BO6 — 57 nm. The particle size of the Nd15Fe78B7 alloy was 45–140 nm. It is shown that the proposed method is suitable for obtaining nanopowders of hard magnetic alloys of the Nd-Fe-B system.

2019 ◽  
Vol 2019 ◽  
pp. 1-6
Author(s):  
Galina Kholodnaya ◽  
Roman Sazonov ◽  
Denis Ponomarev ◽  
Igor Zhirkov

This paper presents a study on pulsed plasma-chemical synthesis of fluorine- and gold-doped silicon oxide nanopowder. The gold- and fluorine-containing precursors were gold chloride (AuCl3) and sulphur hexafluoride (SF6). Pulsed plasma-chemical synthesis is realized on the laboratory stand, including a plasma-chemical reactor and TEA-500 electron accelerator. The parameters of the electron beam are as follows: 400–450 keV electron energy, 60 ns half-amplitude pulse duration, up to 200 J pulse energy, and 5 cm beam diameter. We confirmed the composite structure of SixOy@Au by using transmission electron microscopy and energy-dispersive spectroscopy. We determined the chemical composition and morphology of synthesized SixOy@Au and SixOy@F nanocomposites. The material contained a SixOy@Au carrier with an average size of 50–150 nm and a shell of fine particles with an average size of 5–10 nm.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1721
Author(s):  
Heon Yong Jeong ◽  
Hyung San Lim ◽  
Ju Hyuk Lee ◽  
Jun Heo ◽  
Hyun Nam Kim ◽  
...  

The effect of scintillator particle size on high-resolution X-ray imaging was studied using zinc tungstate (ZnWO4) particles. The ZnWO4 particles were fabricated through a solid-state reaction between zinc oxide and tungsten oxide at various temperatures, producing particles with average sizes of 176.4 nm, 626.7 nm, and 2.127 μm; the zinc oxide and tungsten oxide were created using anodization. The spatial resolutions of high-resolution X-ray images, obtained from utilizing the fabricated particles, were determined: particles with the average size of 176.4 nm produced the highest spatial resolution. The results demonstrate that high spatial resolution can be obtained from ZnWO4 nanoparticle scintillators that minimize optical diffusion by having a particle size that is smaller than the emission wavelength.


2010 ◽  
Vol 123-125 ◽  
pp. 611-614 ◽  
Author(s):  
Yu Ping Tong ◽  
Rui Zhu Zhang ◽  
Shun Bo Zhao ◽  
Chang Yong Li

Well-dispersed fluorite Er2Zr2O7 nanocrystals have been successfully prepared by a convenient salt-assistant combustion method. The effects of calcinations temperature and salt category on the characteristics of the products were investigated by XRD and TEM. The thermal treatment temperature has an important effect on crystal size and lattice distortion of the nanocrystals. The experiment showed that the introduction of salt in the combustion synthesis process resulted in the formation of well-dispersed Er2Zr2O7 nanocrystals. The average size was 30 nm and was in agreement with the XRD result, which indicated that the nanocrystals were uniform in particle size distribution. Moreover, the possible formation process in the salt-assisted combustion synthesis was also analyzed.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2094
Author(s):  
Seok-Ki Jung ◽  
Dae Woon Kim ◽  
Jeongyol Lee ◽  
Selvaponpriya Ramasamy ◽  
Hyun Sik Kim ◽  
...  

The aim of this study was to present a control method for modulating the translucency of lithium disilicate ceramics through thermal refinement. Identical lithium disilicate blocks were thermally refined using four different heat treatment schedules, and the microstructure, translucency, and flexural strength of the ceramics were investigated in detail by SEM, spectroscopy, and a piston-on-three-ball test. The results showed that ceramics treated under higher heat had larger grains, with an average size between 240 and 1080 nm. In addition, a higher transmittance of all wavelengths was observed in ceramics treated under lower heat, and the transmittance in the 550 nm wavelength ranged from 27 to 34%. The results suggest that the translucency of ceramics can be modified through thermal refinement under two conditions: (1) the particle size of the ceramic is small enough to achieve minimal grain-boundary light scattering, and (2) the percentage of particles allowing visible light transmission is altered by the heat treatment.


2018 ◽  
Vol 61 (5) ◽  
pp. 962-973 ◽  
Author(s):  
O. V. Matvienko ◽  
O. I. Daneyko ◽  
T. A. Kovalevskaya

2010 ◽  
Vol 8 (5) ◽  
pp. 1041-1046 ◽  
Author(s):  
Raúl Reza ◽  
Carlos Martínez Pérez ◽  
Claudia Rodríguez González ◽  
Humberto Romero ◽  
Perla García Casillas

AbstractIn this work, the synthesis of magnetite nanoparticles by two variant chemical coprecipitation methods that involve reflux and aging conditions was investigated. The influence of the synthesis conditions on particle size, morphology, magnetic properties and protein adsorption were studied. The synthesized magnetite nanoparticles showed a spherical shape with an average particle size directly influenced by the synthesis technique. Particles of average size 27 nm and 200 nm were obtained. When the coprecipitation method was used without reflux and aging, the smallest particles were obtained. Magnetite nanoparticles obtained from both methods exhibited a superparamagnetic behavior and their saturation magnetization was particle size dependent. Values of 67 and 78 emu g−1 were obtained for the 27 nm and 200 nm magnetite particles, respectively. The nanoparticles were coated with silica, aminosilane, and silica-aminosilane shell. The influence of the coating on protein absorption was studied using Bovine Serum Albumin (BSA) protein.


2016 ◽  
Vol 40 (12) ◽  
pp. 10181-10186 ◽  
Author(s):  
Ji Hun Jeong ◽  
Hao Xuan Ma ◽  
Doyun Kim ◽  
Chang Woo Kim ◽  
In Ho Kim ◽  
...  

Nd2Fe14B hard phase magnetic nanoparticles were successfully synthesized using a chemical synthesis route followed by a reduction and diffusion process without consuming a large amount of energy.


Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 999
Author(s):  
Yi-An Chen ◽  
Kuo-Hsien Chou ◽  
Yi-Yang Kuo ◽  
Cheng-Ye Wu ◽  
Po-Wen Hsiao ◽  
...  

To the best of our knowledge, this report presents, for the first time, the schematic of the possible chemical reaction for a one-pot synthesis of Zn0.5Cd0.5Se alloy quantum dots (QDs) in the presence of low/high oleylamine (OLA) contents. For high OLA contents, high-resolution transmission electron microscopy (HRTEM) results showed that the average size of Zn0.5Cd0.5Se increases significantly from 4 to 9 nm with an increasing OLA content from 4 to 10 mL. First, [Zn(OAc)2]–OLA complex can be formed by a reaction between Zn(OAc)2 and OLA. Then, Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) data confirmed that ZnO is formed by thermal decomposition of the [Zn(OAc)2]–OLA complex. The results indicated that ZnO grew on the Zn0.5Cd0.5Se surface, thus increasing the particle size. For low OLA contents, HRTEM images were used to estimate the average sizes of the Zn0.5Cd0.5Se alloy QDs, which were approximately 8, 6, and 4 nm with OLA loadings of 0, 2, and 4 mL, respectively. We found that Zn(OAc)2 and OLA could form a [Zn(OAc)2]–OLA complex, which inhibited the growth of the Zn0.5Cd0.5Se alloy QDs, due to the decreasing reaction between Zn(oleic acid)2 and Se2−, which led to a decrease in particle size.


Clay Minerals ◽  
1981 ◽  
Vol 16 (4) ◽  
pp. 375-382 ◽  
Author(s):  
Jose L. Rendon ◽  
Carlos J. Serna

AbstractHematites obtained by heating goethite gave different IR absorption spectra depending on the temperature of formation. Hematites formed between 250–600°C consisted of lath-like crystals (average size 0.4 ×0.08 µm) and showed, in accordance with theoretical predictions, very similar IR spectra whose absorption bands could all be assigned to surface mode vibrations. However, significantly different IR spectra were given by hematites formed between 700–950°C, the differences being correlated with variations in the size and shape of the particles. Differences observed in the IR spectra of powder hematite do not therefore justify new names for the mineral, as have been proposed in the literature.


1991 ◽  
Vol 6 (1) ◽  
pp. 8-10 ◽  
Author(s):  
G. M. Chow ◽  
C. L. Chien ◽  
A. S. Edelstein

The evolution of the size and shape of molybdenum nanocrystals fabricated by sputtering in a thermal gradient has been studied as a function of the argon gas pressure, p. For 4 < p < 100 mTorr, continuous Mo films are deposited. At p = 150 mTorr, isolated and well-faceted Mo nanocrystals of two sizes (20 and 5 nm average size) are formed. For 200 ≤ p ≤ 400 mTorr, the particle size decreases with increasing pressure and is about 7 nm at 400 mTorr. On increasing p further, larger particles start to form and at p = 700 mTorr, particle agglomerates are observed. Possible mechanisms leading to these results are suggested.


Sign in / Sign up

Export Citation Format

Share Document