scholarly journals High-temperature nitridization of zirconium, production of ceramic and metal-ceramic refractory structures

2021 ◽  
Vol 12 (2-2021) ◽  
pp. 279-281
Author(s):  
S. V. Shevtsov ◽  
◽  
I. A. Kovalev ◽  
A. S. Chernyavskii ◽  
◽  
...  

Based on the results of the work performed, the nature of the phase distribution in the resulting material, structural and morphological differences between the layered metal-ceramic and ceramic structures were established. The temperature range of zirconium nitride synthesis from 1500 to 2400° C is investigated, and the possibility of successful synthesis of nitride ceramics by the indicated method at temperatures significantly exceeding the melting point of the metal is shown.

1987 ◽  
Vol 31 ◽  
pp. 359-370 ◽  
Author(s):  
W. Wong-Ng ◽  
R. S. Roth ◽  
F. Beech ◽  
K. L. Davis

AbstractTen compounds are found in the Ba0-Y203-CuOx system. High temperature (≈950-1000°C) phases identified as Ba4Y2O7 , Ba2Y2O5 , Ba3Y4O9 , BaY2O4 , Y2Cu2O5 , BaCuO2+x, Ba3YCu2OZ BaY2Cu05 and BazYCu306+x are formed in this temperature range. In addition, a new compound with composition of 2BaO:CuO, which possibly has a melting point below 950°C, was prepared at 850°C. A summary o£ the crystallographic data of these 10 phases is given. In particular, results of x-ray studies pertaining to four compounds, BazYCu306+x, which is currently the most promising high To' superconductor material, Ba2Cu03 , BaY2Cu05 , and Ba3YCu20Z are reviewed.


Author(s):  
N. Rozhanski ◽  
A. Barg

Amorphous Ni-Nb alloys are of potential interest as diffusion barriers for high temperature metallization for VLSI. In the present work amorphous Ni-Nb films were sputter deposited on Si(100) and their interaction with a substrate was studied in the temperature range (200-700)°C. The crystallization of films was observed on the plan-view specimens heated in-situ in Philips-400ST microscope. Cross-sectional objects were prepared to study the structure of interfaces.The crystallization temperature of Ni5 0 Ni5 0 and Ni8 0 Nb2 0 films was found to be equal to 675°C and 525°C correspondingly. The crystallization of Ni5 0 Ni5 0 films is followed by the formation of Ni6Nb7 and Ni3Nb nucleus. Ni8 0Nb2 0 films crystallise with the formation of Ni and Ni3Nb crystals. No interaction of both films with Si substrate was observed on plan-view specimens up to 700°C, that is due to the barrier action of the native SiO2 layer.


Alloy Digest ◽  
1970 ◽  
Vol 19 (12) ◽  

Abstract CRM MOLYBDENUM-50 RHENIUM is a high-melting-point alloy for applications such as electronics tube components, electrical contacts, thermionic converters, thermocouples, heating elements and rocket thrusters. All products are produced by powder metallurgy. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Mo-11. Producer or source: Chase Brass & Copper Company Inc..


Alloy Digest ◽  
1967 ◽  
Vol 16 (10) ◽  

Abstract NICKELVAC L-605 is a double vacuum melted, cobalt-base alloy for high temperature applications. It is recommended for highly stressed parts operating in the temperature range of 1700 to 2000 F. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep and fatigue. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Co-53. Producer or source: Allvac Metals Company, A Teledyne Company.


Alloy Digest ◽  
1970 ◽  
Vol 19 (8) ◽  

Abstract CRM RHENIUM is a commercially pure, high-melting-point metal for applications such as electronics tube components, electrical contacts, thermionic converters, thermocouples, heating elements and rocket thrusters. All products are produced by powder metallurgy. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Re-1. Producer or source: Chase Brass & Copper Company Inc..


2020 ◽  
Vol 12 ◽  
Author(s):  
Fang Wang ◽  
Jingkai Wei ◽  
Caixia Guo ◽  
Tao Ma ◽  
Linqing Zhang ◽  
...  

Background: At present, the main problems of Micro-Electro-Mechanical Systems (MEMS) temperature detector focus on the narrow range of temperature detection, difficulty of the high temperature measurement. Besides, MEMS devices have different response characteristics for various surrounding temperature in the petrochemical and metallurgy application fields with high-temperature and harsh conditions. To evaluate the performance stability of the hightemperature MEMS devices, the real-time temperature measurement is necessary. Objective: A schottky temperature detector based on the metal/n-ZnO/n-Si structures is designed to measure high temperature (523~873K) for the high-temperature MEMS devices with large temperature range. Method: By using the finite element method (FEM), three different work function metals (Cu, Ni and Pt) contact with the n-ZnO are investigated to realize Schottky. At room temperature (298K) and high temperature (523~873K), the current densities with various bias voltages (J-V) are studied. Results: The simulation results show that the high temperature response power consumption of three schottky detectors of Cu, Ni and Pt decreases successively, which are 1.16 mW, 63.63 μW and 0.14 μW. The response temperature sensitivities of 6.35 μA/K, 0.78 μA/K, and 2.29 nA/K are achieved. Conclusion: The Cu/n-ZnO/n-Si schottky structure could be used as a high temperature detector (523~873K) for the hightemperature MEMS devices. It has a large temperature range (350K) and a high response sensitivity is 6.35 μA/K. Compared with traditional devices, the Cu/n-ZnO/n-Si Schottky structure based temperature detector has a low energy consumption of 1.16 mW, which has potential applications in the high-temperature measurement of the MEMS devices.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 581
Author(s):  
Abdulhakim A. Almajid

This study is focused on the deformation mechanism and behavior of naturally aged 7010 aluminum alloy at elevated temperatures. The specimens were naturally aged for 60 days to reach a saturated hardness state. High-temperature tensile tests for the naturally aged sample were conducted at different temperatures of 573, 623, 673, and 723 K at various strain rates ranging from 5 × 10−5 to 10−2 s−1. The dependency of stress on the strain rate showed a stress exponent, n, of ~6.5 for the low two temperatures and ~4.5 for the high two temperatures. The apparent activation energies of 290 and 165 kJ/mol are observed at the low, and high-temperature range, respectively. These values of activation energies are greater than those of solute/solvent self-diffusion. The stress exponents, n, and activation energy observed are rather high and this indicates the presence of threshold stress. This behavior occurred as a result of the dislocation interaction with the second phase particles that are existed in the alloy at the testing temperatures. The threshold stress decreases in an exponential manner as temperature increases. The true activation energy was computed by incorporating the threshold stress in the power-law relation between the stress and the strain. The magnitude of the true activation energy, Qt dropped to 234 and 102 kJ/mol at the low and high-temperature range, respectively. These values are close to that of diffusion of Zinc in Aluminum and diffusion of Magnesium in Aluminum, respectively. The Zener–Hollomon parameter for the alloy was developed as a function of effective stress. The data in each region (low and high-temperature region) coalescence in a segment line in each region.


2007 ◽  
Vol 353-358 ◽  
pp. 1765-1768
Author(s):  
Hong Fei Sun ◽  
Can Ming Wang ◽  
Qiang Song ◽  
Qiong Qiong Yan

Abrasion mechanism of thermocouple cannula is studied in this article. For different working position and condition, different material should be selected to ensure the working characteristics of thermocouple cannula. Several protection methods were introduced to prolong the sevice life of thermocouple cannula. 1. M-Al series intermetallic compound coating protection method. 2. Metal/ceramic compound coating protection method. 3. Development of new abrasion-resisting material for high temperature according to some special work conditions of thermocouple cannula. With the adoption of those new technologies, thermocouple cannula’s service life can be prolonged to 3~5 times of that untreated.


1981 ◽  
Vol 35 (6) ◽  
pp. 582-584 ◽  
Author(s):  
David A. Stephenson

The Raman spectra of CO2 and H2O have been measured from 1000 to 2200°K. The spectra are found to be well described by the simple models described previously. In particular, the simple partition functions of T−1 for CO2 and T−3/2 for H2O are adequate for describing the spectra over the temperature range of interest.


1992 ◽  
Vol 7 (10) ◽  
pp. 2747-2755 ◽  
Author(s):  
C.G. McKamey ◽  
P.F. Tortorelli ◽  
J.H. DeVan ◽  
C.A. Carmichael

MoSi2 is a promising high-temperature material with low density (6.3 g/cm3), high melting point (2020 °C), and good oxidation resistance at temperatures to about 1900 °C. However, in the intermediate temperature range between 400 and 600 °C, it is susceptible to a “pest” reaction which causes catastrophic disintegration by a combination of oxidation and fracture. In this study, we have used polycrystalline MoSi2, produced by arc-casting of the pure elements and by cold and hot pressing of alloy powders, to characterize the pest reaction and to determine the roles of composition, grain or phase boundaries, and physical defects on the oxidation and fracture of specimens exposed to air at 500 °C. It was found that pest disintegration occurs through transport of oxygen into the interior of the specimen along pre-existing cracks and/or pores, where it reacts to form MoO3 and SiO2. The internal stress produced during the formation of MoO3 results in disintegration to powder. Near the stoichiometric ratio, the susceptibility to pest disintegration increases with increasing molybdenum content and with decreasing density. Silicon-rich alloys were able to form protective SiO2 and showed no indication of disintegration, even at densities as low as 60%.


Sign in / Sign up

Export Citation Format

Share Document