X-Ray Study of the BaO-Y2 O3-CuOx System

1987 ◽  
Vol 31 ◽  
pp. 359-370 ◽  
Author(s):  
W. Wong-Ng ◽  
R. S. Roth ◽  
F. Beech ◽  
K. L. Davis

AbstractTen compounds are found in the Ba0-Y203-CuOx system. High temperature (≈950-1000°C) phases identified as Ba4Y2O7 , Ba2Y2O5 , Ba3Y4O9 , BaY2O4 , Y2Cu2O5 , BaCuO2+x, Ba3YCu2OZ BaY2Cu05 and BazYCu306+x are formed in this temperature range. In addition, a new compound with composition of 2BaO:CuO, which possibly has a melting point below 950°C, was prepared at 850°C. A summary o£ the crystallographic data of these 10 phases is given. In particular, results of x-ray studies pertaining to four compounds, BazYCu306+x, which is currently the most promising high To' superconductor material, Ba2Cu03 , BaY2Cu05 , and Ba3YCu20Z are reviewed.

Author(s):  
H. B. Gasimov ◽  
R. M. Rzayev

Cu2Te single crystal was grown by the Bridgman method. X-ray diffraction (XRD) study of Cu2Te single crystals in the temperature range of 293–893 K was performed and possible phase transitions in the mentioned range of temperature have been investigated. (Cu2Te)[Formula: see text](ZnTe)[Formula: see text] single crystals also were grown with [Formula: see text], 0.05, 0.10 concentrations and structural properties of the obtained single crystals were investigated by the XRD method in the temperature range 293–893 K. Lattice parameters and possible phase transitions in the mention temperature range were determined for (Cu2Te)[Formula: see text](ZnTe)[Formula: see text] single crystals for [Formula: see text], 0.05, 0.10 concentrations.


1963 ◽  
Vol 34 (5) ◽  
pp. 545-550 ◽  
Author(s):  
J. D. Wilkinson ◽  
L. D. Calvert

2009 ◽  
Vol 65 (6) ◽  
pp. 770-781 ◽  
Author(s):  
Tatiana N. Drebushchak ◽  
Yury A. Chesalov ◽  
Elena V. Boldyreva

Structural changes in the high-temperature ∊-polymorph of chlorpropamide, 4-chloro-N-(propylaminocarbonyl)benzenesulfonamide, C10H13ClN2O3S, on cooling down to 100 K and on reverse heating were followed by single-crystal X-ray diffraction. At temperatures below 200 K the phase transition into a new polymorph (termed the ∊′-form) has been observed for the first time. The polymorphic transition preserves the space group Pna21, is reversible and is accompanied by discontinuous changes in the cell volume and parameters, resulting from changes in molecular conformation. As shown by IR spectroscopy and X-ray powder diffraction, the phase transition in a powder sample is inhomogeneous throughout the bulk, and the two phases co-exist in a wide temperature range. The cell parameters and the molecular conformation in the new polymorph are close to those in the previously known α-polymorph, but the packing of the z-shaped molecular ribbons linked by hydrogen bonds inherits that of the ∊-form and is different from the packing in the α-polymorph. A structural study of the α-polymorph in the same temperature range has revealed no phase transitions.


2000 ◽  
Vol 15 (1) ◽  
pp. 30-37 ◽  
Author(s):  
Martin Oetzel ◽  
Franz-Dieter Scherberich ◽  
Gernot Heger

In this paper we present a high temperature heating device, working under defined environmental conditions, for a Siemens D500 Bragg–Brentano powder diffractometer. The powder sample is prepared in a flat mould on a metal block consisting either of copper or of platinum depending on the temperature range selected for investigations. Although the heating cell can be used separately under ambient conditions up to sample temperatures of 1000 °C, it is possible to work under defined environmental conditions in the temperature range between 20 and 200 °C and up to a water vapour pressure of 1000 mbar. For that purpose a special cover for the in situ control of temperature and water vapour pressure has been constructed. It is important to note that the three sample conditions (sample temperature, gas temperature, and gas humidity) can be adjusted separately by the user. Current studies have shown that the described X-ray heating device is a powerful tool to study dehydration reactions in the frame of fundamental research as well as to understand industrially relevant processes concerning dehydration reactions and their mechanisms.


Author(s):  
М.К. Шаров

The values of the lattice period and the linear coefficient of thermal expansion (alfa) of Pb1-xCdxTe solid solutions are determined depending on the cadmium content and temperature using high-temperature X-ray diffractometry. Аn increase in the concentration of cadmium in Pb1-xCdxTe in the range x = 0.02–0.08 leads to a significant increase in the linear coefficient of thermal expansion. A change in temperature range T = 293–673 K leads to decrease in the linear coefficient of thermal expansion. Besides, an increase in temperature does not affect the value alfa of the undoped PbTe in the indicated temperature range.


1999 ◽  
Vol 14 (2) ◽  
pp. 456-459 ◽  
Author(s):  
V. Swamy ◽  
N. A. Dubrovinskaya ◽  
L. S. Dubrovinsky

Powder x-ray diffraction data of yttria (Y2O3) were obtained from room temperature to melting point with the thin wire resistance heating technique. A solid-state phase transition was observed at 2512 ± 25 K and melting of the high-uemperature phase at 2705 ± 25 K. Thermal expansion data for α–Y2O3 (C-type) are given for the range 298–2540 K. The unit cell parameter increases nonlinearly, especially just before the solid-state transition. The x-ray diffraction spectrum of the high-temperature phase is consistent with the fluorite-type structure (space group Fm3) with a refined unit cell parameter a = 5.3903(6) Å at 2530 K. The sample recrystallized rapidly above 2540 K, and above 2730 K, all the diffraction lines and spots disappeared from the x-ray diffraction spectrum that suggests complete melting.


2021 ◽  
Vol 106 (1) ◽  
pp. 123-134
Author(s):  
Ernesto Mesto ◽  
Salvatore Laurita ◽  
Maria Lacalamita ◽  
Rosa Sinisi ◽  
Giovanna Rizzo ◽  
...  

Abstract The crystal chemistry and thermal behavior of Fe-carpholite from the Pollino Massif have been investigated by a multi-method approach. A combination of optical microscopy, scanning electron microscopy, mRaman spectroscopy, thermal analysis, room-temperature single-crystal X-ray diffraction, and high-temperature X-ray powder diffraction was employed. Field and micromorphological observations showed that the studied carpholite occurs in veins embedded in fine-grained matapelites and coexist with quartz, calcite, chlorite, and phengite. In particular, the tiny carpholite crystals are closely associated with quartz, suggesting simultaneous formation. Structure refinements from single-crystal X-ray diffraction confirm that carpholite crystallizes in the Ccce space group. Anisotropic refinements converged at 2.3 ≤ R (%) ≤ 2.6 and yielded unit-cell parameters a ~13.77 Å, b ~20.16 Å, c ~5.11 Å, and V ~1419 Å3. An XFe [i.e., the molar fraction Fe2+/(Mg+Fe2++Mn)] of ~0.6 was derived from the refined occupancy at the M1 site and is correlated to structural expansion mainly along the b and a axes and to geometrical distortions of the M1, M2, and M3 octahedra. mRaman spectrum of unoriented Fe-carpholite crystals exhibits several bands in the 200–1200 cm–1 region, a strong peak at 3630 cm–1 and a weak peak at 3593 cm–1, the latter two of which account for the presence of two independent OH groups, as also revealed by the X-ray structure refinement. The TG curve indicates a total mass loss of 15.6% in the temperature range 30–1000 °C, and the DTA curve shows a broad endothermic band at ~400 °C, extending up to ~650 °C, and weak exothermic peaks at ~700 and 750 °C. The latter may be ascribed to the breakdown of the Fe-carpholite structure and crystallization of new phases. The in situ high-temperature X-ray powder diffraction from 30 to 1105 °C revealed no significant changes in XRD patterns from 30 to 355 °C but reflection splittings from 380 °C due to a Fe-oxidation/deprotonation process. The carpholite and deprotonated carpholite phases coexist in the temperature range 380–580 °C, whereas only the deprotonated phase is observed up to 630 °C. Above this temperature, the carpholite structure collapses and the characteristic peaks of spinel and quartz phases are observed. At 1105 °C, spinel, mullite, garnet, cristobalite, and tridymite can be clearly identified. Our results provide insight into the thermal stability of Fe-carpholites and may help understand the thermal evolution of HP/LT metasediments.


1989 ◽  
Vol 03 (11) ◽  
pp. 1671-1679 ◽  
Author(s):  
W.S. TSE ◽  
C.S. FANG ◽  
A. ANDERSON ◽  
B.H. TORRIE

Raman and infrared spectra of polycrystalline HI and DI in the region of lattice and internal modes for all three phases have been recorded over the temperature range 18 K to the melting point. The temperature dependent Raman and infrared results are consistent with the X-ray and neutron work that two phase transitions occur at HI and DI involving reorientation of the HI and DI molecules as a whole.


2019 ◽  
Vol 9 (13) ◽  
pp. 2642 ◽  
Author(s):  
Michał Zieliński ◽  
Angelika Kiderys ◽  
Mariusz Pietrowski ◽  
Bogdan Czajka ◽  
Iwona Tomska-Foralewska ◽  
...  

Magnesium oxide, generally applied as a filler in high-temperature cells (with an electrolyte melting point above 250 °C), was modified with magnesium fluoride to improve its mechanical and electrical properties. Samples containing 10 and 25 mol.% MgF2 were prepared and calcined at 500, 600, and 700 °C. They were characterized by low-temperature nitrogen adsorption and X-ray diffractometry (XRD). Moreover, the electrolyte absorption, mechanical strength of pellets made of filler and electrolyte, and volume of unfilled spaces were determined. It was shown that the introduction of MgF2 in the amount of 10 and 25 mol.% results in a considerable decrease in the surface area of the initial MgO, which testifies to the covering of MgO by the formed fluoride. However, no new crystalline phases were formed as concluded from the XRD analysis. The pellets consisting of electrolyte and MgF2/MgO filler (the electrolyte + 40 wt.% of the filler) had a higher mechanical strength compared to bare MgO filler. In particular, they outperformed MgO in the ionic conductivity of molten electrolyte. The latter was almost three times as high as that of MgO filler, when the filler containing 25 mol.% MgF2 was employed. The aforementioned properties of MgF2/MgO materials predispose them for use as fillers in high-temperature cells.


2013 ◽  
Vol 68 (9) ◽  
pp. 2007-2011 ◽  
Author(s):  
Chang-Yu Liao ◽  
Fang-Chih Chang ◽  
H. Paul Wang ◽  
Yu-Ling Wei ◽  
Chih-Ju G. Jou

Toxic arsenics in an AsH3 scrubber sludge were thermally stabilized in the temperature range of 973–1,373 K. To better understand how the high-temperature treatments can stabilize arsenics in the sludge, their synchrotron X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectra of arsenics were determined. It is found that the reduced arsenic leachability may be associated with the formation of As2O5 (51–59%) and embedded As(V) within the Ca3(PO4)2 matrix (41–49%) in the stabilized sludge. In addition, the As-O bond distances in the stabilized As2O5 are much less than that of normal As2O5 by 0.05–0.07 Å. The shorter As-O bond distances accompanied with the higher bonding energy also have a contribution to the thermal stabilization of arsenics.


Sign in / Sign up

Export Citation Format

Share Document