scholarly journals Rapid thermal annealing for high-quality ITO thin films deposited by radio-frequency magnetron sputtering

2019 ◽  
Vol 10 ◽  
pp. 1511-1522 ◽  
Author(s):  
Petronela Prepelita ◽  
Ionel Stavarache ◽  
Doina Craciun ◽  
Florin Garoi ◽  
Catalin Negrila ◽  
...  

In this work, rapid thermal annealing (RTA) was applied to indium tin oxide (ITO) films in ambient atmosphere, resulting in significant improvements of the quality of the ITO films that are commonly used as conductive transparent electrodes for photovoltaic structures. Starting from a single sintered target (purity 99.95%), ITO thin films of predefined thickness (230 nm, 300 nm and 370 nm) were deposited at room temperature by radio-frequency magnetron sputtering (rfMS). After deposition, the films were subjected to a RTA process at 575 °C (heating rate 20 °C/s), maintained at this temperature for 10 minutes, then cooled down to room temperature at a rate of 20 °C/s. The film structure was modified by changing the deposition thickness or the RTA process. X-ray diffraction investigations revealed a cubic nanocrystalline structure for the as-deposited ITO films. After RTA, polycrystalline compounds with a textured (222) plane were observed. X-ray photon spectroscopy was used to confirm the beneficial effect of the RTA treatment on the ITO chemical composition. Using a Tauc plot, values of the optical band gap ranging from 3.17 to 3.67 eV were estimated. These values depend on the heat treatment and the thickness of the sample. Highly conductive indium tin oxide thin films (ρ = 7.4 × 10−5 Ω cm) were obtained after RTA treatment in an open atmosphere. Such films could be used to manufacture transparent contact electrodes for solar cells.

2012 ◽  
Vol 502 ◽  
pp. 77-81
Author(s):  
Z.Y. Zhong ◽  
J.H. Gu ◽  
X. He ◽  
C.Y. Yang ◽  
J. Hou

Indium tin oxide (ITO) thin films were deposited by RF magnetron sputtering on glass substrates employing a sintered ceramic target. The influence of substrate temperature on the structural, compositional, optical and electrical properties of the thin films were investigated by X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), spectrophotometer and four-point probes. All the ITO thin films show a polycrystalline indium oxide structure and have a preferred orientation along the (222) direction. The substrate temperature significantly affects the crystal structure and optoelectrical properties of the thin films. With the increment of substrate temperature, the electrical resistivity of the deposited films decreases, the crystallite dimension, optical bandgap and average transmittance in the visible region increase. The ITO thin film deposited at substrate temperature of 200 °C possesses the best synthetic optoelectrical properties, with the highest transmittance, the lowest resistivity and the highest figure of merit.


1995 ◽  
Vol 403 ◽  
Author(s):  
Otto J. Gregory ◽  
Stephen E. Dyer ◽  
Paul S. Amons ◽  
Arnout Bruins SLOT

AbstractStrain sensors based on thin films of indium tin oxide (ITO) have been developed for a variety of applications, where the measurement of both static and dynamic strain are required at elevated temperatures. ITO thin films were prepared by rf reactive sputtering in Ar:02 mixtures from high density, electrically conductive targets having a nominal composition of 90% In203 and 10% Sn02. The resulting ITO films exhibited room temperature resistivities between 2x10−2 and 2x102 ω cm, an optical bandgap of 3.5 ev and tested “n” type by hot probe. These same films exhibited large negative gage factors (G=δρ/ ρδε) when tested at room temperature and a relatively low temperature coefficient of resistance when tested at elevated temperature in air. Specifically, gage factors approaching -100 with little hysteresis were observed for strains up to 700 μin/in and TCR's as low as 195 ppm/°C have been measured for the sputtered ITO films. In addition, these films were electrically stable and readily formed ohmic contacts with platinum at temperatures up to 1180°C. In this paper, we report on the electrical properties and piezoresistive properties of ITO based strain gages at temperatures up to 1180°C. Prospects of using ITO thin films as the active strain elements in high temperature strain gages and the characteristics of strain sensors based on ITO are discussed.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
A. M. H. R. Hakimi ◽  
F. Schoofs ◽  
M. G. Blamire ◽  
S. Langridge ◽  
S. S. Dhesi

The effects of high-temperature annealing on ferromagnetic Co-doped Indium Tin Oxide (ITO) thin films have been investigated using X-ray diffraction (XRD), magnetometry, and X-Ray Magnetic Circular Dichroism (XMCD). Following annealing, the magnetometry results indicate the formation of Co clusters with a significant increase in the saturation magnetization of the thin films arising from defects introduced during cluster formation. However, sum rule analysis of the element-specific XMCD results shows that the magnetic moment at the Co sites is reduced after annealing. The effects of annealing demonstrate that the ferromagnetism observed in the as-deposited Co-doped ITO films arises from intrinsic defects and cannot be related to the segregation of metallic Co clusters.


2003 ◽  
Vol 18 (2) ◽  
pp. 442-447 ◽  
Author(s):  
Karola Thiele ◽  
Sibylle Sievers ◽  
Christian Jooss ◽  
Jörg Hoffmann ◽  
Herbert C. Freyhardt

Biaxially aligned indium tin oxide (ITO) thin films were prepared by an ion-beamassisted deposition (IBAD) process at room temperature. Films with a transmittance at 550 nm of 90% and an electrical resistivity of 1.1 × 10−3 Ωcm for 300 and 250 nm thickness were obtained. Investigations of the texture evolution during IBAD film growth were carried out and compared to the well-established texture development in yttria-stabilized zirconia. An in-plane texture of 12.6° full width at half-maximum (FWHM) for a 1-μm-thick IBAD-ITO film was achieved. The quality of these films as electrically conductive buffer layers for YBa2Cu3O7-δ (YBCO) high-temperature superconductors was demonstrated by the subsequent deposition of high-currentcarrying YBCO films by thermal co-evaporation using a 3–5-nm-thick Y2O3 interlayer.A Jc of 0.76 MA/cm2 (77K, 0 T) was obtained for a 1 × 1 cm sample with ITO of 20° FWHM.


2008 ◽  
Vol 55-57 ◽  
pp. 769-772 ◽  
Author(s):  
I Srithanachai ◽  
K. Nutaman ◽  
A. Rerkratn ◽  
S. Niemcharoen ◽  
S. Supadech

This paper descript studying and preparation indium-tin oxide (ITO) thin film from method 90 wt.% In2O3 and 10 wt.% SnO2 formula target with 99.99% purity on glass slide by RF reactive sputtering method at room temperature. This paper, sputtering time 5, 15, 30 and 60 mins. Thin films ITO were measured crystallization, optical and electrical characteristic by an X-ray diffractometer (XRD), scan electron microscopy (SEM) , Four Point Probe and UV-VIS spectrophotometry. The results found that thin films which made from RF sputtering method had a high crystallization, order arrangement grain. Strong peak of XRD (400) and (441), low resistivity are 2.2 x 10-3, 4.4 x 10-3, 1 x 10-3 and 7 x 10-4 Ω-cm, transmittance are 82%, 84%, 87% and 89%, respectively. The overall experimental results identify that fabricated thin films ITO have good properties and is suitable for transparent electrode application. The ultimate goal is developing schottky photodetector.


2021 ◽  
Vol 51 (4) ◽  
Author(s):  
Chuen-Lin Tien ◽  
Tsai-Wei Lin ◽  
Shu-Hui Su

This paper investigates the influence of film thickness on the electrical and mechanical properties of transparent indium tin oxide (ITO) thin films. Two groups of ITO thin films deposited on unheated substrates were prepared by the radio-frequency magnetron sputtering technique. The biaxial residual stress and surface roughness for two groups of ITO thin films were measured by a Twyman–Green interferometer and a Linnik microscopic interferometer, respectively. The electrical resistivity of the ITO films was measured by a four-point probe apparatus, the thickness was determined mechanically with a profilometer. The measurement results show that the average resistivity of ITO thin films decreases with increasing the deposited thickness. The compressive residual stress in the ITO thin films decreases with increasing the deposited thickness. We also find that an anisotropic stress in the two groups of ITO films is more compressive in a certain direction. The RMS surface roughness in the two groups of ITO films is less than 1 nm.


Sign in / Sign up

Export Citation Format

Share Document