scholarly journals Differences in surface chemistry of iron oxide nanoparticles result in different routes of internalization

2021 ◽  
Vol 12 ◽  
pp. 270-281
Author(s):  
Barbora Svitkova ◽  
Vlasta Zavisova ◽  
Veronika Nemethova ◽  
Martina Koneracka ◽  
Miroslava Kretova ◽  
...  

The efficient entry of nanotechnology-based pharmaceuticals into target cells is highly desired to reach high therapeutic efficiency while minimizing the side effects. Despite intensive research, the impact of the surface coating on the mechanism of nanoparticle uptake is not sufficiently understood yet. Herein, we present a mechanistic study of cellular internalization pathways of two magnetic iron oxide nanoparticles (MNPs) differing in surface chemistry into A549 cells. The MNP uptake was investigated in the presence of different inhibitors of endocytosis and monitored by spectroscopic and imaging techniques. The results revealed that the route of MNP entry into cells strongly depends on the surface chemistry of the MNPs. While serum bovine albumin-coated MNPs entered the cells via clathrin-mediated endocytosis (CME), caveolin-mediated endocytosis (CavME) or lipid rafts were preferentially involved in the internalization of polyethylene glycol-coated MNPs. Our data indicate that surface engineering can contribute to an enhanced delivery efficiency of nanoparticles.

2018 ◽  
Vol 6 (10) ◽  
Author(s):  
Hosam Zaghloul ◽  
Doaa A. Shahin ◽  
Ibrahim El- Dosoky ◽  
Mahmoud E. El-awady ◽  
Fardous F. El-Senduny ◽  
...  

Antisense oligonucleotides (ASO) represent an attractive trend as specific targeting molecules but sustain poor cellular uptake meanwhile superparamagnetic iron oxide nanoparticles (SPIONs) offer stability of ASO and improved cellular uptake. In the present work we aimed to functionalize SPIONs with ASO targeting the mRNA of Cyclin B1 which represents a potential cancer target and to explore its anticancer activity. For that purpose, four different SPIONs-ASO conjugates, S-M (1–4), were designated depending on the sequence of ASO and constructed by crosslinking carboxylated SPIONs to amino labeled ASO. The impact of S-M (1–4) on the level of Cyclin B1, cell cycle, ROS and viability of the cells were assessed by flowcytometry. The results showed that S-M3 and S-M4 reduced the level of Cyclin B1 by 35 and 36%, respectively. As a consequence to downregulation of Cyclin B1, MCF7 cells were shown to be arrested at G2/M phase (60.7%). S-M (1–4) led to the induction of ROS formation in comparison to the untreated control cells. Furthermore, S-M (1–4) resulted in an increase in dead cells compared to the untreated cells and SPIONs-treated cells. In conclusion, targeting Cyclin B1 with ASO-coated SPIONs may represent a specific biocompatible anticancer strategy.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1950
Author(s):  
Rossella Canese ◽  
Federica Vurro ◽  
Pasquina Marzola

Starting from the mid-1990s, several iron oxide nanoparticles (NPs) were developed as MRI contrast agents. Since their sizes fall in the tenths of a nanometer range, after i.v. injection these NPs are preferentially captured by the reticuloendothelial system of the liver. They have therefore been proposed as liver-specific contrast agents. Even though their unfavorable cost/benefit ratio has led to their withdrawal from the market, innovative applications have recently prompted a renewal of interest in these NPs. One important and innovative application is as diagnostic agents in cancer immunotherapy, thanks to their ability to track tumor-associated macrophages (TAMs) in vivo. It is worth noting that iron oxide NPs may also have a therapeutic role, given their ability to alter macrophage polarization. This review is devoted to the most recent advances in applications of iron oxide NPs in tumor diagnosis and therapy. The intrinsic therapeutic effect of these NPs on tumor growth, their capability to alter macrophage polarization and their diagnostic potential are examined. Innovative strategies for NP-based drug delivery in tumors (e.g., magnetic resonance targeting) will also be described. Finally, the review looks at their role as tracers for innovative, and very promising, imaging techniques (magnetic particle imaging-MPI).


MRS Advances ◽  
2020 ◽  
Vol 5 (42) ◽  
pp. 2157-2168
Author(s):  
Aileen O'Shea ◽  
Anushri Parakh ◽  
Rita Maria Lahoud ◽  
Sandeep Hedgire ◽  
Mukesh G Harisinghani

AbstractWhile the use of iron oxide nanoparticles as magnetic resonance contrast agents for clinical imaging is established, they are more recently experiencing renewed interest as alternatives to gadolinium-based contrast agents. Ultra-small iron oxide nanoparticles have unique pharmacokinetics, metabolic and imaging properties. These properties have led to improved techniques for imaging a variety of vascular, oncologic and inflammatory conditions with iron oxide nanoparticles. Current research efforts are aimed at harnessing the characteristics of these nanoparticles to advance magnetic resonance imaging techniques and explore new therapeutic potentials. While there are some limitations to the use of iron oxide nanoparticles, including allergies to parenteral iron and iron storage disorders, the practicable applications for these agents will continue to expand. The purpose of this review is to provide a brief overview of the history and synthesis of iron oxide nanoparticles, their current applications in clinical imaging and their prospective clinical applications.


2016 ◽  
Vol 14 (1) ◽  
Author(s):  
Freya Joris ◽  
Daniel Valdepérez ◽  
Beatriz Pelaz ◽  
Stefaan J. Soenen ◽  
Bella B. Manshian ◽  
...  

2018 ◽  
Vol 10 (5) ◽  
pp. 4548-4560 ◽  
Author(s):  
Grazyna Stepien ◽  
María Moros ◽  
Marta Pérez-Hernández ◽  
Marta Monge ◽  
Lucía Gutiérrez ◽  
...  

Biologija ◽  
2017 ◽  
Vol 63 (1) ◽  
Author(s):  
Meheri Askary ◽  
Seyed Mehdi Talebi ◽  
Fariba Amini ◽  
Ali Dousti Balout Bangan

The progress of nanotechnology presents many nanoparticles that are important in medicine, agriculture and industry. Quickly and entirely absorbed by plants, nano-compounds and remedy their nutrient deficiency and satisfy this need. Iron oxide nanoparticles with suitable surface chemistry can be used as a rich source of iron for plants due to its gradual release of Fe in a wide pH range (pH 3 to 11). The present study investigated the impact of iron oxide nanoparticles (Fe2O3NPs in 0, 10, 20 and 30  µM concentrations) on physiological parameters of peppermint (Mentha piperita) under salt stress (0, 50, 100 and 150 mM concentrations of NaCl). Fe2O3NPs caused increases in leaf fresh weight and dry weight, phosphorus, potassium, iron, zinc, and calcium contents of the peppermint under salinity stress but did not have an effect on the sodium element. 30 µM concentration of Fe2O3NP was more impressive. Lipid peroxidation and proline contents of the peppermint under salinity decreased significantly by applying Fe2O3NPs. The maximum activities of total antioxidant enzymes (I %), catalase, superoxide dismutase, and guailcol peroxidase were observed in plants treated with 150 mM of NaCl, but application of Fe2O3NPs declined these antioxidant activities. The results suggest that the appropriate concentration of iron nanoparticles could be used for stress resistance of the peppermint.


2020 ◽  
Vol 21 (5) ◽  
pp. 1613 ◽  
Author(s):  
Amlan Chakraborty ◽  
Simon Royce ◽  
Cordelia Selomulya ◽  
Magdalena Plebanski

Despite developments in pulmonary radiotherapy, radiation-induced lung toxicity remains a problem. More sensitive lung imaging able to increase the accuracy of diagnosis and radiotherapy may help reduce this problem. Super-paramagnetic iron oxide nanoparticles are used in imaging, but without further modification can cause unwanted toxicity and inflammation. Complex carbohydrate and polymer-based coatings have been used, but simpler compounds may provide additional benefits. Herein, we designed and generated super-paramagnetic iron oxide nanoparticles coated with the neutral natural dietary amino acid glycine (GSPIONs), to support non-invasive lung imaging and determined particle biodistribution, as well as understanding the impact of the interaction of these nanoparticles with lung immune cells. These GSPIONs were characterized to be crystalline, colloidally stable, with a size of 12 ± 5 nm and a hydrodynamic diameter of 84.19 ± 18 nm. Carbon, Hydrogen, Nitrogen (CHN) elemental analysis estimated approximately 20.2 × 103 glycine molecules present per nanoparticle. We demonstrated that it is possible to determine the biodistribution of the GSPIONs in the lung using three-dimensional (3D) ultra-short echo time magnetic resonance imaging. The GSPIONs were found to be taken up selectively by alveolar macrophages and neutrophils in the lung. In addition, the GSPIONs did not cause changes to airway resistance or induce inflammatory cytokines. Alveolar macrophages and neutrophils are critical regulators of pulmonary inflammatory diseases, including allergies, infections, asthma and chronic obstructive pulmonary disease (COPD). Therefore, pulmonary Magnetic Resonance (MR) imaging and preferential targeting of these lung resident cells by our nanoparticles offer precise imaging tools, which can be utilized to develop precision targeted radiotherapy as well as diagnostic tools for lung cancer, thereby having the potential to reduce the pulmonary complications of radiation.


Sign in / Sign up

Export Citation Format

Share Document