scholarly journals Synthesis of C-glycosyl phosphonate derivatives of 4-amino-4-deoxy-α-L-arabinose

2019 ◽  
Author(s):  
Lukáš Kerner ◽  
Paul Kosma

Incorporation of basic substituents into the structurally conserved domains of cell-wall lipopolysaccharides has been identified as a major mechanism contributing to antimicrobial resistance of Gram-negative pathogenic bacteria. Inhibition of the corresponding enzymatic steps, specifically the transfer of 4-amino-4-deoxy-L-arabinose would thus restore the activity of cationic antimicrobial peptides and several antimicrobial drugs. C-glycosidically linked phospholipid derivatives of  4-amino-4-deoxy-L-arabinose have been prepared as hydrolytically stable and chain-shortened analogues of the native undecaprenyldonor.  The C-phosphonate unit was installed via a Wittig-type reaction of benzyl-protected 1,5-arabinonic acid lactone with the lithium salt of dimethyl methylphosphonate followed by an elimination step of the resulting hemiketal leading to the corresponding exo- and endo-glycal derivatives. The ensuing selective mono-demethylation and hydrogenolysis of the benzyl groups and reduction of the 4-azido group gave the α-L-anomeric arabino- and ribo-configured methyl phosphonate esters. In addition, the monomethyl phosphonate glycal intermediates were converted into n-octyl derivatives followed by subsequent selective removal of the methyl phosphonate ester group and hydrogenation to give the octyl-phosphono derivatives. These intermediates thus will be of value for future conversion into transition state analogues as well as for introduction of various lipid extensions at the anomeric phosphonate moiety.

2020 ◽  
Vol 16 ◽  
pp. 9-14
Author(s):  
Lukáš Kerner ◽  
Paul Kosma

The incorporation of basic substituents into the structurally conserved domains of cell wall lipopolysaccharides has been identified as a major mechanism contributing to antimicrobial resistance of Gram-negative pathogenic bacteria. Inhibition of the corresponding enzymatic steps, specifically the transfer of 4-amino-4-deoxy-ʟ-arabinose, would thus restore the activity of cationic antimicrobial peptides and several antimicrobial drugs. C-glycosidically-linked phospholipid derivatives of 4-amino-4-deoxy-ʟ-arabinose have been prepared as hydrolytically stable and chain-shortened analogues of the native undecaprenyl donor. The C-phosphonate unit was installed via a Wittig reaction of benzyl-protected 1,5-arabinonic acid lactone with the lithium salt of dimethyl methylphosphonate followed by an elimination step of the resulting hemiketal, leading to the corresponding exo- and endo-glycal derivatives. The ensuing selective monodemethylation and hydrogenolysis of the benzyl groups and reduction of the 4-azido group gave the α-ʟ-anomeric arabino- and ribo-configured methyl phosphonate esters. In addition, the monomethyl phosphonate glycal intermediates were converted into n-octyl derivatives followed by subsequent selective removal of the methyl phosphonate ester group and hydrogenation to give the octylphosphono derivatives. These intermediates will be of value for their future conversion into transition state analogues as well as for the introduction of various lipid extensions at the anomeric phosphonate moiety.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Weiwei Wang ◽  
Yan Gao ◽  
Yanting Tang ◽  
Xiaoting Zhou ◽  
Yuezheng Lai ◽  
...  

AbstractCytochromes bd are ubiquitous amongst prokaryotes including many human-pathogenic bacteria. Such complexes are targets for the development of antimicrobial drugs. However, an understanding of the relationship between the structure and functional mechanisms of these oxidases is incomplete. Here, we have determined the 2.8 Å structure of Mycobacterium smegmatis cytochrome bd by single-particle cryo-electron microscopy. This bd oxidase consists of two subunits CydA and CydB, that adopt a pseudo two-fold symmetrical arrangement. The structural topology of its Q-loop domain, whose function is to bind the substrate, quinol, is significantly different compared to the C-terminal region reported for cytochromes bd from Geobacillus thermodenitrificans (G. th) and Escherichia coli (E. coli). In addition, we have identified two potential oxygen access channels in the structure and shown that similar tunnels also exist in G. th and E. coli cytochromes bd. This study provides insights to develop a framework for the rational design of antituberculosis compounds that block the oxygen access channels of this oxidase.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1242
Author(s):  
Sreejita Ghosh ◽  
Dibyajit Lahiri ◽  
Moupriya Nag ◽  
Ankita Dey ◽  
Tanmay Sarkar ◽  
...  

Bacteria are considered as the major cell factories, which can effectively convert nitrogen and carbon sources to a wide variety of extracellular and intracellular biopolymers like polyamides, polysaccharides, polyphosphates, polyesters, proteinaceous compounds, and extracellular DNA. Bacterial biopolymers find applications in pathogenicity, and their diverse materialistic and chemical properties make them suitable to be used in medicinal industries. When these biopolymer compounds are obtained from pathogenic bacteria, they serve as important virulence factors, but when they are produced by non-pathogenic bacteria, they act as food components or biomaterials. There have been interdisciplinary studies going on to focus on the molecular mechanism of synthesis of bacterial biopolymers and identification of new targets for antimicrobial drugs, utilizing synthetic biology for designing and production of innovative biomaterials. This review sheds light on the mechanism of synthesis of bacterial biopolymers and its necessary modifications to be used as cell based micro-factories for the production of tailor-made biomaterials for high-end applications and their role in pathogenesis.


2021 ◽  

Klebsiella pneumoniae (K. pneumoniae) is a common pathogenic bacteria that causes numerous infectious diseases. Hypervirulent K. pneumoniae (hvKP) can lead to invasive K. pneumoniae liver abscess syndrome, which can induce life-threatening multiple organ dysfunction syndrome or septic shock. We report a case of invasive K. pneumoniae liver abscess syndrome caused by hvKP and discuss the treatment options of this syndrome. Appropriate antimicrobial drugs should be administered to improve prognosis and prevent complications, and laboratory testing is essential to guide clinical management and optimize patient outcomes.


Antibiotics ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 98 ◽  
Author(s):  
Eunice Mgbeahuruike ◽  
Pia Fyhrquist ◽  
Heikki Vuorela ◽  
Riitta Julkunen-Tiitto ◽  
Yvonne Holm

Piper guineense is a food and medicinal plant commonly used to treat infectious diseases in West-African traditional medicine. In a bid to identify new antibacterial compounds due to bacterial resistance to antibiotics, twelve extracts of P. guineense fruits and leaves, obtained by sequential extraction, as well as the piperine and piperlongumine commercial compounds were evaluated for antibacterial activity against human pathogenic bacteria. HPLC-DAD and UHPLC/Q-TOF MS analysis were conducted to characterize and identify the compounds present in the extracts with promising antibacterial activity. The extracts, with the exception of the hot water decoctions and macerations, contained piperamide alkaloids as their main constituents. Piperine, dihydropiperine, piperylin, dihydropiperylin or piperlonguminine, dihydropiperlonguminine, wisanine, dihydrowisanine and derivatives of piperine and piperidine were identified in a hexane extract of the leaf. In addition, some new piperamide alkaloids were identified, such as a piperine and a piperidine alkaloid derivative and two unknown piperamide alkaloids. To the best of our knowledge, there are no piperamides reported in the literature with similar UVλ absorption maxima and masses. A piperamide alkaloid-rich hexane leaf extract recorded the lowest MIC of 19 µg/mL against Sarcina sp. and gave promising growth inhibitory effects against S. aureus and E. aerogenes as well, inhibiting the growth of both bacteria with a MIC of 78 µg/mL. Moreover, this is the first report of the antibacterial activity of P. guineense extracts against Sarcina sp. and E. aerogenes. Marked growth inhibition was also obtained for chloroform extracts of the leaves and fruits against P. aeruginosa with a MIC value of 78 µg/mL. Piperine and piperlongumine were active against E. aerogenes, S. aureus, E. coli, S. enterica, P. mirabilis and B. cereus with MIC values ranging from 39–1250 µg/mL. Notably, the water extracts, which were almost devoid of piperamide alkaloids, were not active against the bacterial strains. Our results demonstrate that P. guineense contains antibacterial alkaloids that could be relevant for the discovery of new natural antibiotics.


1999 ◽  
Vol 54 (9) ◽  
pp. 1133-1137
Author(s):  
Astrid Knieß ◽  
Margit Gruner ◽  
Roland Mayer

ß-Oxo-1 and 9-anthracenepropionate (6 and 7) reacts with DMF-acetale to enaminones 10 and 11. The reaction of 2-(dimethylamino)methylen-substituted ß-oxo-1 -anthracenepropionate (10) with hydrazines yields 5-(l-anthracenyl)-pyrazol-4-carboxylates (13). In contrast, the cyclocondensation of 3-(9-anthracenyl)-2-(dimethylamino)methylen-3-oxo-propionate (11) with hydrazine hydrochlorides gives 4-(9-anthracenoyl)-5-hydroxy-pyrazoles (14). This is caused by the sterical hindrance of the carbonyl group of the anthracene derivatives in position 9; thus, the cyclocondensation proceeds via reaction of the ester group of the enaminone 11.


1992 ◽  
Vol 101 (1_suppl) ◽  
pp. 33-36 ◽  
Author(s):  
Jack L. Paradise

Antimicrobial prophylaxis for recurrent otitis media was first reported in 1960 in an uncontrolled study using a long-acting sulfonamide in Native American children younger than 11 years of age. In subsequent controlled studies using various antimicrobial drugs (primarily aminopenicillins or sulfonamides) subjects receiving prophylaxis continued to have episodes of acute otitis media, but at rates substantially lower than those of controls. More recently, prophylaxis has appeared effective in reducing the number of acute recurrences, but not the cumulative proportion of time with middle ear effusion that was present independent of such recurrences. Although questions remain about choice of drug, optimal dosage schedules, risk of untoward drug reactions, duration of use, and the risk of encouraging the emergence of resistant strains of pathogenic bacteria, antimicrobial prophylaxis currently appears to be the most logical first approach in the management of the child with recurrent otitis media.


1986 ◽  
Vol 6 (3) ◽  
pp. 265-273 ◽  
Author(s):  
Jane A. Jones ◽  
Alison Wood ◽  
William Cushley

The recognition of phosphate and sulphate esters of tyrosine residues has been studied employing antisera with specificity for tyrosine phosphate, and the enzymes aryl sulphatase, and acid and alkaline phosphatases. The ability of tyrosine phosphate, and of phosphate esters of phenol, to inhibit the antiserum was pH dependent. The capacity to effect inhibition appeared to correlate with alterations in the ionisation of the inhibitor. Moreover, the antisera with reactivity for tyrosine phosphate had no reactivity with tyrosine sulphate or sulphate esters of phenol at any pH value studied. The enzymes alkaline phosphatase, acid phosphatase, and aryl sulphatase were also studied. The phosphatases were found not to hydrolyse sulphate ester containing substrate analogues at any pH value in the range 5.0–9.0. In contrast, aryl sulphatase appeared to hydrolyse phosphate esters at pH 5.0 and 7.0, but not at pH 9.0.


2014 ◽  
Vol 1 (1) ◽  
pp. 5
Author(s):  
Umasankar Kulandaivelu ◽  
Bhawatha Chawada ◽  
Shireesha Boyapati ◽  
Alavala Rajasekhar Reddy

Arylalkylidene derivatives of aminotriazoles (3a-3j) were synthesized and tested for their antimicrobial and anticancer activity. Four non-pathogenic bacteria [E. coli (NCIM 2068), K. pneumoniae (NCIM 2957), S. aureus (NCIM 2079), B. subtilis (NCIM 2921)] two fungi [C. albicans, A. niger] and two cancer cell lines [HBL-100 and HT-29] were employed in the study. All the compounds were found to have better antibacterial activity against B. subtilis than Ciprofloxacin (standard) and compound 3i was equivalent to Ciprofloxacin in inhibiting S. aureas. Similarly all the compounds inhibited the growth of A. niger better than Fluconazole and compound 3c was equivalent to Fluconazole (standard) in inhibiting C. albicans. In case of anticancer activity none of the molecule exhibited activity better than the standard used (Methotrexate), though they have inhibitory concentration at submicromolar level.


Sign in / Sign up

Export Citation Format

Share Document