КАПЕЛЬНОЕ ОРОШЕНИЕ РЕПЧАТОГО ЛУКА: ИТОГИ 2019 г.

Author(s):  
V.V. Vybornov

Представлены данные по площадям посева репчатого лука в мире, России и Волгоградской области. Наибольшие площади посева лука в России отмечены в Волгоградской области - 6,48 тыс. га. Цель исследований -повышение эффективности управления водным и минеральным питанием репчатого лука за счет обоснования расчетного слоя увлажнения почвы и агротехнических приемов возделывания на светло-каштановых почвах для получения 110 т/га товарной продукции. Полевой опыт включает следующие варианты: водный режим почвы (фактор А), режим минерального питания (фактор В), перспективные гибриды лука (фактор С). Исследования проводятся на посевах репчатого лука ВалероF1 МанасF1 ПандероF1 УниверсоF1 БлустерF1 СедонаF1.Data on the areas of onion sowing in the world, Russia and the Volgograd region are presented. The largest areas of onion sowing in Russia were recorded in the Volgograd region of 6.48 thousand ha. The aim of the research is to increase the efficiency of water and mineral nutrition management of onions by substantiating the calculated soil moisture layer and agrotechnical methods of cultivation on light chestnut soils to obtain 110 t / ha of commercial products. Field experience includes the following options: soil water regime (factor A), mineral nutrition regime (factor B), promising onion hybrids (factor C). Research is conducted on onions onion Valero F1 Manas F1 Pandero F1 Universo F1 Bluster F1 Sedona F1.

2021 ◽  
Vol 843 (1) ◽  
pp. 012064
Author(s):  
V V Vybornov ◽  
V A Zaitsev

Abstract From 2017 to 2020, research was conducted in the Volgograd region in order to improve the efficiency of water and mineral nutrition management of onions by justifying the calculated layer of soil moisture and agrotechnical methods of cultivation on light chestnut soils to obtain 110 t/ha of marketable products. The main objectives of the research include the rationale for the formation of the water regime of the soil and drip irrigation regimes depending on the wetted soil, the study of patterns of growth, development and yield formation of onion depending on the studied factors, economic and environmental assessment of drip irrigation technology, the quality of the bulbs, depending on the studied factors. The field experience included the following options: water regime of the soil (factor A), mineral nutrition regime (factor B), promising onion hybrids (factor C).The studies were carried out on onion crops C1 – Migros F1; C2 – Dragon F1 ; C3 - Dammica F1. Against the background of the introduction of N180P80K70, the Migros F1 hybrid provides an average of 94.3 t/ha of onions in 3 years of research, which is 16.6 t/ha more in comparison with the Dragon F1 onion; and 2.2 t/ha more in the Dammica F1 hybrid.


2017 ◽  
Vol 44 (1) ◽  
pp. 46-53 ◽  
Author(s):  
Ladislav Tužinský ◽  
Eduard Bublinec ◽  
Marek Tužinský

AbstractThe aim of this paper is to analyse the water regime of soils under spruce ecosystems in relation to long-lasting humid and drought periods in the growing seasons 1991-2013. The dominant interval humidity in observing growing seasons is semiuvidic interval with soil moisture between hydro-limits maximal capillary capacity (MCC) and point of diminished availability (PDA). Gravitationally seepage concentrated from accumulated winter season, water from melting snow and existing atmospheric precipitation occurs in the soil only at the beginning of the growing season. The supplies of soil water are significantly decreasing in the warm climate and precipitant deficient days. The greatest danger from drought threatens Norway spruce during the summer months and it depends on the duration of dry days, water supply at the beginning of the dry days, air temperature and the intensity of evapotranspiration. In the surface layers of the soil, with the maximum occurrence of active roots, the water in semiarid interval area between hydro-limits PDA and wilting point (WP) decreases during the summer months. In the culminating phase occurs the drying to moisture state with capillary stationary and the insufficient supply of available water for the plants. Physiological weakening of Norway spruce caused by set of outlay components of the water balance is partially reduced by delivering of water by capillary action from deeper horizons. In extremely dry periods, soil moisture is decreasing also throughout the soil profile (0-100 cm) into the bottom third of the variation margin hydro-limits MCC-PDA in the category of capillary less moving and for plants of low supply of usable water (60-90 mm). The issue of deteriorated health state of spruce ecosystems is considered to be actual. Changes and developments of hydropedological conditions which interfere the mountain forests represent the increasing danger of the drought for the spruce.


Internet of Things (IoT) is an advanced technology for monitoring and controlling device anywhere in the world. It can connect devices with living things. Agriculture is one of the major sectors which contribute a lot to the financial of India and to get quality product, proper irrigation has to be performed, to reduce man power using modern technology of internet of things IoT in today’s life. Soil moisture is an integral part of plant life, which directly affects crop growth and yield, as well as irrigation scheduling. This system will be a substitute to traditional farming method. We will develop such a system that will help a farmer to know his field status in his home or he may be residing in any part of the world. It proposes an automatic irrigation system for the agricultural lands. Currently the automation is one of the important roles in the human life. It is not only provides comfort but also efficiency and time saving. So here it is also designs a smart irrigation technology by using raspberry pi and connecting to the weather API. Raspberry-pi is the main heart of the whole system. An automated irrigation system was developed to optimize water use for agricultural crops. Automation allows us to control appliances automatically. The objectives of this to control the water motor automatically, To monitor the soil, water level using weather API.A robotized irrigation system framework might have been created should streamline water utilize to agriculture crops. Mechanization permits us with control appliances naturally. Those targets for this on control those water motor naturally monitor the soil, water level utilizing weather API In previously we are using the soil moisture control by using some set of sensors by this water is pumping continuously even though it is rainy.so by this over flow of the water is taken place to overcome this problem we are using the cloud monitoring system based on the weather conditions.


2020 ◽  
Author(s):  
Giulio Castelli ◽  
Shimbahri Mesfin ◽  
Lucas Allan Almeida Olivera ◽  
Elena Bresci ◽  
Eyasu Yazew

<p>In arid areas prone to desertification and soil erosion, the effectiveness of agricultural bench terraces in increasing soil moisture is dependent on their correct implementation. However, despite its relevance for securing food production in many areas of the world, the relationship between proper terracing implementation and the landscape capacity of holding soil moisture is still not understood. Moreover, spatial patterns of Soil Water Content (SWC) within the same terraced hillslope are weakly studied. The present work analyses SWC variations in four newly implemented terraced sites in Tigray Region, Ethiopia: Teshi, Ruba Feleg, Michael Emba and Enda Chena. Field SWC data were collected for the dry season of 2017 (February, March and April) from the upper, middle and lower part of each terraced site, including a non-terraced benchmark area. In all sites, terraced areas show SWC significantly higher than non-terraced ones (p < 0.05), with the lower part of the terraced hillslope more humid than the others for the whole period analyzed. A Multiple Linear Regression (MLR) analysis of SWC was conducted in order to highlight possible dependencies of SWC values. MLR highlighted significant dependency of SWC from the date of analysis, the position of the sample in the terraced slope, as well as a significant positive correlation of SWC with the percent of Water Stable Aggregates (WSA) analyzed at the study sites. Since high soil disturbance induces low soil aggregates stability, this result shows how measures to reduce soil disturbance during implementation can significantly increase SWC of radical terraces. Overall, the results of the present paper testify the good performances of bench terraces in Northern Ethiopia in terms of water conservation, and this first benchmark study can inform future terracing implementation in some arid and semi-arid agricultural areas of the world.</p><p>The abstract is based on Mesfin, S.; Almeida Oliveira, L.A.; Yazew, E.; Bresci, E.; Castelli, G. Spatial Variability of Soil Moisture in Newly Implemented Agricultural Bench Terraces in the Ethiopian Plateau. Water 2019, 11, 2134.</p>


Biologia ◽  
2009 ◽  
Vol 64 (3) ◽  
Author(s):  
Csilla Farkas ◽  
Márta Birkás ◽  
György Várallyay

AbstractSoil as the largest potential natural water reservoir in the Carpathian Basin has increasing importance under conditions of predicted climate change resulting in increase of probability of extreme hydrological events. Soil management changes soil structure and has a major effect on soil water, heat and nutrition regimes. In this study the effect of four tillage treatments in combination with catch crop management was studied on soil hydraulic properties and water regime under semi-arid conditions. Investigations were carried out in a long-term soil tillage experiment established on Calcic Chernozem soil in Hungary. Tillage variants comprised mouldboard ploughing, disking, loosening combined with disking and direct drilling. The crop sequence between September 2003 and September 2004 comprised maize (main crop), rye (catch crop) and pea (forage). In May 2004, disturbed samples and undisturbed soil cores were collected from each tillage treatment/catch crop combination. The main soil physical and hydrophysical properties were determined in laboratory. In each treatment, capacitive soil moisture probes were installed up to 80 cm depth to ensure continuous measurement of soil water content. Total soil water amounts of chosen soil layers and soil water content dynamics as a function of depth were evaluated for selected periods in order to quantify the effect of the studied management systems on soil water regime. The main conclusion from the experiment is that under such (or similar) ecological conditions, the uniform, „over-standardized“ adaptation of tillage methods for soil moisture conservation is rather risky, their application needs special care and the future is for site-specific precision technologies. These are, in combination with catch crop application can be efficient measures of environmental protection and soil structure and water conservation.


2005 ◽  
Vol 33 (1) ◽  
pp. 185-188 ◽  
Author(s):  
Csilla Farkas ◽  
Roger Randriamampianina ◽  
Juraj Majerčak

Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 37
Author(s):  
Tomás de Figueiredo ◽  
Ana Caroline Royer ◽  
Felícia Fonseca ◽  
Fabiana Costa de Araújo Schütz ◽  
Zulimar Hernández

The European Space Agency Climate Change Initiative Soil Moisture (ESA CCI SM) product provides soil moisture estimates from radar satellite data with a daily temporal resolution. Despite validation exercises with ground data that have been performed since the product’s launch, SM has not yet been consistently related to soil water storage, which is a key step for its application for prediction purposes. This study aimed to analyse the relationship between soil water storage (S), which was obtained from soil water balance computations with ground meteorological data, and soil moisture, which was obtained from radar data, as affected by soil water storage capacity (Smax). As a case study, a 14-year monthly series of soil water storage, produced via soil water balance computations using ground meteorological data from northeast Portugal and Smax from 25 mm to 150 mm, were matched with the corresponding monthly averaged SM product. Linear (I) and logistic (II) regression models relating S with SM were compared. Model performance (r2 in the 0.8–0.9 range) varied non-monotonically with Smax, with it being the highest at an Smax of 50 mm. The logistic model (II) performed better than the linear model (I) in the lower range of Smax. Improvements in model performance obtained with segregation of the data series in two subsets, representing soil water recharge and depletion phases throughout the year, outlined the hysteresis in the relationship between S and SM.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 708
Author(s):  
Phanthasin Khanthavong ◽  
Shin Yabuta ◽  
Hidetoshi Asai ◽  
Md. Amzad Hossain ◽  
Isao Akagi ◽  
...  

Flooding and drought are major causes of reductions in crop productivity. Root distribution indicates crop adaptation to water stress. Therefore, we aimed to identify crop roots response based on root distribution under various soil conditions. The root distribution of four crops—maize, millet, sorghum, and rice—was evaluated under continuous soil waterlogging (CSW), moderate soil moisture (MSM), and gradual soil drying (GSD) conditions. Roots extended largely to the shallow soil layer in CSW and grew longer to the deeper soil layer in GSD in maize and sorghum. GSD tended to promote the root and shoot biomass across soil moisture status regardless of the crop species. The change of specific root density in rice and millet was small compared with maize and sorghum between different soil moisture statuses. Crop response in shoot and root biomass to various soil moisture status was highest in maize and lowest in rice among the tested crops as per the regression coefficient. Thus, we describe different root distributions associated with crop plasticity, which signify root spread changes, depending on soil water conditions in different crop genotypes as well as root distributions that vary depending on crop adaptation from anaerobic to aerobic conditions.


1986 ◽  
Vol 11 (2) ◽  
pp. 117-125 ◽  
Author(s):  
Adrian C. Armstrong ◽  
Robert Arrowsmith

Sign in / Sign up

Export Citation Format

Share Document