scholarly journals Integrated Biorefinery: High Value-Added Products from Agro-Industrial Residues

2021 ◽  
Vol 2 (4) ◽  
pp. 286-287
Author(s):  
Alessandra Morana

Every year, the anthropic activities generate thousands of tonnes of agro-industrial residues, which create serious disposal problems and have a very important economic and environmental impact. At this time, the most popular way of their disposing is degradation by biological and/or biochemical and/or thermal treatments; however, they often contain significant percentages of useful compounds that can be extracted and used in several sectors, thus representing an opportunity to be exploited through the development of eco-compatible/sustainable technologies with low environmental impact.

2020 ◽  
Vol 117 (14) ◽  
pp. 7719-7728 ◽  
Author(s):  
Xiaoqiang Ma ◽  
Gökalp Gözaydın ◽  
Huiying Yang ◽  
Wenbo Ning ◽  
Xi Han ◽  
...  

Chitin is the most abundant renewable nitrogenous material on earth and is accessible to humans in the form of crustacean shell waste. Such waste has been severely underutilized, resulting in both resource wastage and disposal issues. Upcycling chitin-containing waste into value-added products is an attractive solution. However, the direct conversion of crustacean shell waste-derived chitin into a wide spectrum of nitrogen-containing chemicals (NCCs) is challenging via conventional catalytic processes. To address this challenge, in this study, we developed an integrated biorefinery process to upgrade shell waste-derived chitin into two aromatic NCCs that currently cannot be synthesized from chitin via any chemical process (tyrosine andl-DOPA). The process involves a pretreatment of chitin-containing shell waste and an enzymatic/fermentative bioprocess using metabolically engineeredEscherichia coli. The pretreatment step achieved an almost 100% recovery and partial depolymerization of chitin from shrimp shell waste (SSW), thereby offering water-soluble chitin hydrolysates for the downstream microbial process under mild conditions. The engineeredE. colistrains produced 0.91 g/L tyrosine or 0.41 g/Ll-DOPA from 22.5 g/L unpurified SSW-derived chitin hydrolysates, demonstrating the feasibility of upcycling renewable chitin-containing waste into value-added NCCs via this integrated biorefinery, which bypassed the Haber–Bosch process in providing a nitrogen source.


Forests ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1055
Author(s):  
Óscar J. Sánchez ◽  
Sandra Montoya

Research Highlights: For the first time, a model was developed and applied for polysaccharide production from Trametes versicolor grown in agro-industrial and woody residues under solid-state fermentation (SSF) conditions. Background and Objectives: Fungal biomass is an important biological resource for biotechnological applications. Basidiomycetes fungi can be grown and developed on lignocellulosic materials such as forestry, wood, and agro-industrial residues in order to produce value-added products like bioactive polysaccharides. The objectives of this study were to evaluate the effects of the C/N ratio and copper concentration on biomass and polysaccharide production during solid state fermentation (SSF), as well as on the consumption of cellulose and hemicellulose, and lignin degradation, and to propose and validate a mathematical model to describe the overall SSF process. Materials and Methods: This research was carried out by growing three Basidiomycetes species (T. versicolor, Lentinula edodes, and Pleurotus ostreatus) on twelve formulations of solid substrates using mixtures of different inexpensive lignocellulosic residues such as oak sawdust, coconut fiber (hairs), coffee husks, and corn bran plus soybean oil, calcium carbonate, and two levels of copper(II) sulfate. Results: The three fungal species grew well on all substrate formulations. The statistical analysis of experimental data showed no significant effects on polysaccharide production, in the range of C/N and copper concentrations evaluated. Taking into account that the best polysaccharide production was obtained with T. versicolor (96.09 mg/g solid substrate), a mathematical model was proposed for this fungus to describe the behavior of the fermentation system from the obtained data of all the resulting combinations to reach the highest polysaccharide production by the fungus. Conclusions: The mathematical model disclosed in this work enabled to describe the growth and development of a higher basidiomycete under solid-state fermentation conditions on lignocellulosic substrates as well as the production of value-added products like polysaccharides with medicinal properties.


Fuel ◽  
2022 ◽  
Vol 307 ◽  
pp. 121782 ◽  
Author(s):  
Sk. Yasir Arafat Siddiki ◽  
M. Mofijur ◽  
P. Senthil Kumar ◽  
Shams Forruque Ahmed ◽  
Abrar Inayat ◽  
...  

Foods ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 347 ◽  
Author(s):  
Iliada Lappa ◽  
Aikaterini Papadaki ◽  
Vasiliki Kachrimanidou ◽  
Antonia Terpou ◽  
Dionysios Koulougliotis ◽  
...  

Cheese whey constitutes one of the most polluting by-products of the food industry, due to its high organic load. Thus, in order to mitigate the environmental concerns, a large number of valorization approaches have been reported; mainly targeting the recovery of whey proteins and whey lactose from cheese whey for further exploitation as renewable resources. Most studies are predominantly focused on the separate implementation, either of whey protein or lactose, to configure processes that will formulate value-added products. Likewise, approaches for cheese whey valorization, so far, do not exploit the full potential of cheese whey, particularly with respect to food applications. Nonetheless, within the concept of integrated biorefinery design and the transition to circular economy, it is imperative to develop consolidated bioprocesses that will foster a holistic exploitation of cheese whey. Therefore, the aim of this article is to elaborate on the recent advances regarding the conversion of whey to high value-added products, focusing on food applications. Moreover, novel integrated biorefining concepts are proposed, to inaugurate the complete exploitation of cheese whey to formulate novel products with diversified end applications. Within the context of circular economy, it is envisaged that high value-added products will be reintroduced in the food supply chain, thereby enhancing sustainability and creating “zero waste” processes.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1823
Author(s):  
Pascual Garcia-Perez ◽  
Jianbo Xiao ◽  
Paulo E. S. Munekata ◽  
Jose M. Lorenzo ◽  
Francisco J. Barba ◽  
...  

The search for waste minimization and the valorization of by-products are key to good management and improved sustainability in the food industry. The great production of almonds, based on their high nutritional value as food, especially almond kernels, generates tons of waste yearly. The remaining parts (skin, shell, hulls, etc.) are still little explored, even though they have been used as fuel by burning or as livestock feed. The interest in these by-products has been increasing, as they possess beneficial properties, caused by the presence of different bioactive compounds, and can be used as promising sources of new ingredients for the food, cosmetic and pharmaceutical industry. Additionally, the use of almond by-products is being increasingly applied for the fortification of already-existing food products, but there are some limitations, including the presence of allergens and mycotoxins that harden their applicability. This review focuses on the extraction technologies applied to the valorization of almond by-products for the development of new value-added products that would contribute to the reduction of environmental impact and an improvement in the sustainability and competitiveness of the almond industry.


2018 ◽  
Vol 28 (5) ◽  
pp. 1681-1684
Author(s):  
Georgi Toskov ◽  
Ana Yaneva ◽  
Stanko Stankov ◽  
Hafize Fidan

The European Commission defines the bioeconomy as "the production of renewable biological resources and the conversion of these resources and waste streams into value added products, such as food, feed, bio-based products and bioenergy. Its sectors and industries have strong innovation potential due to their use of a wide range of sciences, enabling and industrial technologies, along with local and implied knowledge." The Bulgarian food industry faces a lot of challenges on the local and national level, which have direct influence on the structure of the production companies. Most of the enterprises from the food sector produce under foreign brands in order to be flexible partners to the large Bulgarian retail chains. The small companies from the food sector are not able to develop as an independent competitive producer on the territory of their local markets. This kind of companies rarely has a working strategy for positioning on new markets. In order to consolidate their already built positions for long period of time, the producers are trying to optimize their operations in a short term. However, the unclear vision of the companies for the business segment does not allow them to fully develop. Tourism in Bulgaria is a significant contributor to the country's economy.


2020 ◽  
Vol 4 (7) ◽  
pp. 3726-3731
Author(s):  
Fenghui Ye ◽  
Jinghui Gao ◽  
Yilin Chen ◽  
Yunming Fang

Electroreduction of CO2 into value-added products is a promising technique in which the structure of the catalyst plays a crucial role.


2020 ◽  
Vol 9 (1) ◽  
pp. 55
Author(s):  
María Florencia Eberhardt ◽  
José Matías Irazoqui ◽  
Ariel Fernando Amadio

Stabilization ponds are a common treatment technology for wastewater generated by dairy industries. Large proportions of cheese whey are thrown into these ponds, creating an environmental problem because of the large volume produced and the high biological and chemical oxygen demands. Due to its composition, mainly lactose and proteins, it can be considered as a raw material for value-added products, through physicochemical or enzymatic treatments. β-Galactosidases (EC 3.2.1.23) are lactose modifying enzymes that can transform lactose in free monomers, glucose and galactose, or galactooligosacharides. Here, the identification of novel genes encoding β-galactosidases, identified via whole-genome shotgun sequencing of the metagenome of dairy industries stabilization ponds is reported. The genes were selected based on the conservation of catalytic domains, comparing against the CAZy database, and focusing on families with β-galactosidases activity (GH1, GH2 and GH42). A total of 394 candidate genes were found, all belonging to bacterial species. From these candidates, 12 were selected to be cloned and expressed. A total of six enzymes were expressed, and five cleaved efficiently ortho-nitrophenyl-β-galactoside and lactose. The activity levels of one of these novel β-galactosidase was higher than other enzymes reported from functional metagenomics screening and higher than the only enzyme reported from sequence-based metagenomics. A group of novel mesophilic β-galactosidases from diary stabilization ponds’ metagenomes was successfully identified, cloned and expressed. These novel enzymes provide alternatives for the production of value-added products from dairy industries’ by-products.


Dairy ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 202-217
Author(s):  
Michele Manoni ◽  
Donata Cattaneo ◽  
Sharon Mazzoleni ◽  
Carlotta Giromini ◽  
Antonella Baldi ◽  
...  

Milk lipids are composed of milk fat globules (MFGs) surrounded by the milk fat globule membrane (MFGM). MFGM protects MFGs from coalescence and enzymatic degradation. The milk lipid fraction is a “natural solvent” for macronutrients such as phospholipids, proteins and cholesterol, and micronutrients such as minerals and vitamins. The research focused largely on the polar lipids of MFGM, given their wide bioactive properties. In this review we discussed (i) the composition of MFGM proteome and its variations among species and phases of lactation and (ii) the micronutrient content of human and cow’s milk lipid fraction. The major MFGM proteins are shared among species, but the molecular function and protein expression of MFGM proteins vary among species and phases of lactation. The main minerals in the milk lipid fraction are iron, zinc, copper and calcium, whereas the major vitamins are vitamin A, β-carotene, riboflavin and α-tocopherol. The update and the combination of this knowledge could lead to the exploitation of the MFGM proteome and the milk lipid fraction at nutritional, biological or technological levels. An example is the design of innovative and value-added products, such as MFGM-supplemented infant formulas.


Sign in / Sign up

Export Citation Format

Share Document