scholarly journals CAN WE REALLY PREVENT ALZHEIMER’S DISEASE?

2015 ◽  
Vol 14 (1) ◽  
pp. 10-15
Author(s):  
Octavian-Mihai Sirbu ◽  
◽  
Anca-Maria Sandu ◽  
Florentina-Cristina Plesa ◽  
Carmen-Adella Sirbu ◽  
...  

Alzheimer’s disease, a neurodegenerative disorder that affects mainly the elderly people, was declared a public health priority by the World Health Organization. Because the main clinical manifestations are cognitive, behavioral and psychological symptoms, patients diagnosed with this disease have a significantly lower quality of life. This type of dementia has an inexorably progressive evolution so, families and health care staff, must make great efforts to provide a decent standard of living for these patients. Because it has a huge economic burden and there is no treatment to stop or cure the disease, it is important to emphasises modifiable risk factors and to apply prevention strategies, proved by scientific evidence.

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Corona Solana ◽  
Raquel Tarazona ◽  
Rafael Solana

Alzheimer’s disease (AD) represents the most common cause of dementia in the elderly. AD is a neurodegenerative disorder characterized by progressive memory loss and cognitive decline. Although the aetiology of AD is not clear, both environmental factors and heritable predisposition may contribute to disease occurrence. In addition, inflammation and immune system alterations have been linked to AD. The prevailing hypothesis as cause of AD is the deposition in the brain of amyloid beta peptides (Aβ). Although Aβ have a role in defending the brain against infections, their accumulation promotes an inflammatory response mediated by microglia and astrocytes. The production of proinflammatory cytokines and other inflammatory mediators such as prostaglandins and complement factors favours the recruitment of peripheral immune cells further promoting neuroinflammation. Age-related inflammation and chronic infection with herpes virus such as cytomegalovirus may also contribute to inflammation in AD patients. Natural killer (NK) cells are innate lymphoid cells involved in host defence against viral infections and tumours. Once activated NK cells secrete cytokines such as IFN-γ and TNF-α and chemokines and exert cytotoxic activity against target cells. In the elderly, changes in NK cell compartment have been described which may contribute to the lower capacity of elderly individuals to respond to pathogens and tumours. Recently, the role of NK cells in the immunopathogenesis of AD is discussed. Although in AD patients the frequency of NK cells is not affected, a high NK cell response to cytokines has been described together with NK cell dysregulation of signalling pathways which is in part involved in this altered behaviour.


2020 ◽  
Vol 9 (1) ◽  
pp. 22-42
Author(s):  
Sunpreet Kaur ◽  
Puneet Kumar ◽  
Shamsher Singh

Background: Alzheimer’s disease is the most common neurodegenerative disorder affecting the elderly population and emerges as a leading challenge for the scientific research community. The wide pathological aspects of AD made it a multifactorial disorder and even after long time it’s difficult to treat due to unexplored etiological factors. Methods: The etiogenesis of AD includes mitochondrial failure, gut dysbiosis, biochemical alterations but deposition of amyloid-beta plaques and neurofibrillary tangles are implicated as major hallmarks of neurodegeneration in AD. The aggregates of these proteins disrupt neuronal signaling, enhance oxidative stress and reduce activity of various cellular enzymes which lead to neurodegeneration in the cerebral cortex, neocortex and hippocampus. The metals like copper, aluminum are involved in APP trafficking and promote amyloidbeta aggregation. Similarly, disturbed ubiquitin proteasomal system, autophagy and amyloid- beta clearance mechanisms exert toxic insult in the brain. Result and conclusion : The current review explored the role of oxidative stress in disruption of amyloid homeostasis which further leads to amyloid-beta plaque formation and subsequent neurodegeneration in AD. Presently, management of AD relies on the use of acetylcholinesterase inhibitors, antioxidants and metal chelators but they are not specific measures. Therefore, in this review, we have widely cited the various pathological mechanisms of AD as well as possible therapeutic targets.


2020 ◽  
Vol 21 (21) ◽  
pp. 8014
Author(s):  
Sudip Dhakal ◽  
Ian Macreadie

Alzheimer’s Disease (AD) is a progressive multifactorial age-related neurodegenerative disorder that causes the majority of deaths due to dementia in the elderly. Although various risk factors have been found to be associated with AD progression, the cause of the disease is still unresolved. The loss of proteostasis is one of the major causes of AD: it is evident by aggregation of misfolded proteins, lipid homeostasis disruption, accumulation of autophagic vesicles, and oxidative damage during the disease progression. Different models have been developed to study AD, one of which is a yeast model. Yeasts are simple unicellular eukaryotic cells that have provided great insights into human cell biology. Various yeast models, including unmodified and genetically modified yeasts, have been established for studying AD and have provided significant amount of information on AD pathology and potential interventions. The conservation of various human biological processes, including signal transduction, energy metabolism, protein homeostasis, stress responses, oxidative phosphorylation, vesicle trafficking, apoptosis, endocytosis, and ageing, renders yeast a fascinating, powerful model for AD. In addition, the easy manipulation of the yeast genome and availability of methods to evaluate yeast cells rapidly in high throughput technological platforms strengthen the rationale of using yeast as a model. This review focuses on the description of the proteostasis network in yeast and its comparison with the human proteostasis network. It further elaborates on the AD-associated proteostasis failure and applications of the yeast proteostasis network to understand AD pathology and its potential to guide interventions against AD.


2013 ◽  
Vol 13 (1) ◽  
Author(s):  
Wendy Smyth ◽  
Elaine Fielding ◽  
Elizabeth Beattie ◽  
Anne Gardner ◽  
Wendy Moyle ◽  
...  

2010 ◽  
Vol 5 (1) ◽  
pp. 12
Author(s):  
Daniela Galimberti ◽  
Chiara Fenoglio ◽  
Elio Scarpini ◽  
◽  
◽  
...  

Alzheimer's disease (AD) is the most common cause of dementia in the elderly, whereas frontotemporal lobar degeneration (FTLD) is the most frequent neurodegenerative disorder with a pre-senile onset. The two major neuropathological hallmarks of AD are extracellular amyloid beta plaques and intracellular neurofibrillary tangles. In FTLD the deposition of tau has been observed in a number of cases, but in several brains there is no deposition of tau but instead a positivity for ubiquitin. In some families these diseases are inherited in an autosomal dominant fashion. Genes responsible for familial AD include the amyloid precursor protein (APP), presenilin 1 (PS1) and presenilin 2 (PS2), whereas the main genes responsible for familial FTLD are microtubule-associated protein tau gene (MAPT) and progranulin (GRN). Concerning sporadic AD, it is known that the presence of the ε4 allele of the apolipoprotein E gene is a susceptibility factor. A number of additional genetic factors contribute to susceptibility for AD and FTLD.


2008 ◽  
Vol 21 (6) ◽  
pp. 755-771
Author(s):  
O. Schillaci ◽  
L. Travascio ◽  
C. Bruni ◽  
G. Bazzocchi ◽  
A. Testa ◽  
...  

Alzheimer's disease (AD), a progressive neurodegenerative disorder, is the most common cause of dementia in the elderly. Magnetic resonance (MR) or computed tomography (CT) imaging is recommended for routine evaluation of dementias. The development of molecular imaging agents and the new techniques of MR for AD are critically important for early diagnosis, neuropathogenesis studies and assessing treatment efficacy in AD. Neuroimaging using nuclear medicine techniques such as SPECT, PET and MR spectroscopy has the potential to characterize the biomarkers for Alzheimer's disease. The present review summarizes the results of radionuclide imaging and MR imaging in AD.


Genetika ◽  
2013 ◽  
Vol 45 (2) ◽  
pp. 503-514 ◽  
Author(s):  
Jalal Gharesouran ◽  
Maryam Rezazadeh ◽  
Mohaddes Mojtaba

Alzheimer's disease is a complex neurodegenerative disorder characterized by memory and cognitive impairment and is the leading cause of dementia in the elderly. The aim of our study was to examine the polymorphic DNA markers CCR2 (+190 G/A), CCR5?32, TNF-? (-308 G/A), TNF-? (-863 C/A) and CALHM1 (+394 C/T) to determine the relationship between these polymorphisms and the risk of late onset Alzheimer's disease in the population of Eastern Azerbaijan of Iran. A total of 160 patient samples and 163 healthy controls were genotyped by PCR-RFLP and the results confirmed using bidirectional sequencing. Statistical analysis of obtained data revealed non-significant difference between frequency of CCR5?32 in case and control groups. The same result was observed for TNF-? (-863 C/A) genotype and allele frequencies. Contrary to above results, significant differences were detected in frequency of TNF-? (-308 G/A) and CCR2-64I genotypes between the cases and healthy controls. A weak significant difference observed between allele and genotype frequencies of rs2986017 in CALHM1 (+394 C/T; P86L) in patient and control samples. It can be concluded that the T allele of P86L variant in CALHM1 & +190 G/A allele of CCR2 have a protective role against abnormal clinical features of Alzheimer's disease.


2021 ◽  
Vol 28 ◽  
Author(s):  
Érika Paiva de Moura ◽  
Natan Dias Fernandes ◽  
Alex France Messias Monteiro ◽  
Herbert Igor Rodrigues de Medeiros ◽  
Marcus Tullius Scotti ◽  
...  

Background: Alzheimer's disease (AD) is a very common neurodegenerative disorder in individuals over 65 years of age, however, younger individuals can also be affected due to early brain damage. Introduction: The general symptoms of this disease include progressive loss of memory, changes in behavior, deterioration of thinking, and gradual loss of ability to perform daily activities. According to the World Health Organization, dementia has affected more than 50 million people worldwide, and it is estimated that there are 10 million new cases per year, of which 70% are due to AD. Methods: This paper reported a review of scientific articles available on the internet, which discussed in silico analyzes, such as molecular docking, molecular dynamics, and quantitative structure-activity relationship (QSAR) of different classes of natural products and their derivatives published from 2016 onwards. In addition, this work reports the potential of fermented papaya preparation against oxidative stress in AD. Results: With this research, it is expected that it will highlight the most recent studies about AD, the computational analysis methods used in proposing new bioactive and their possible molecular targets, and finally, the molecules or classes of natural products involved in each study. Conclusion: Thus, studies like this can orientate new works against neurodegenerative diseases, especially AD.


2017 ◽  
Vol 28 (8) ◽  
Author(s):  
Yuan Zhang ◽  
Xu Chen ◽  
Yanfang Zhao ◽  
Murugavel Ponnusamy ◽  
Ying Liu

AbstractAlzheimer’s disease (AD) is the most common neurodegenerative disorder leading to dementia in the elderly population. AD is associated with the buildup of β-amyloid and tau, which aggregate into extracellular plaques and neurofibrillary tangles. Although the exact mechanism of pathological process of AD is unclear, the dysfunction of protein degradation mechanisms has been proposed to play an important role in AD. The cellular degradation of abnormal or misfolded proteins consists of three different mechanisms: the ubiquitin proteasomal system (UPS), autophagy-lysosomal pathway (ALP), and interaction of molecular chaperones with UPS or ALP. Any disturbance to these systems causes proteins to accumulate, resulting in pathological process of AD. In this review, we summarize the knowledge of protein degradation pathways in the pathogenesis of AD in light of the current literature. In the future, the regulation UPS or ALP machineries could be the cornerstones of the treatment of AD.


2020 ◽  
Vol 22 (1) ◽  
pp. 196
Author(s):  
Umair Shabbir ◽  
Momna Rubab ◽  
Akanksha Tyagi ◽  
Deog-Hwan Oh

Curcumin is a polyphenolic natural compound with diverse and attractive biological properties, which may prevent or ameliorate pathological processes underlying age-related cognitive decline, Alzheimer’s disease (AD), dementia, or mode disorders. AD is a chronic neurodegenerative disorder that is known as one of the rapidly growing diseases, especially in the elderly population. Moreover, being the eminent cause of dementia, posing problems for families, societies as well a severe burden on the economy. There are no effective drugs to cure AD. Although curcumin and its derivatives have shown properties that can be considered useful in inhibiting the hallmarks of AD, however, they have low bioavailability. Furthermore, to combat diagnostic and therapeutic limitations, various nanoformulations have also been recognized as theranostic agents that can also enhance the pharmacokinetic properties of curcumin and other bioactive compounds. Nanocarriers have shown beneficial properties to deliver curcumin and other nutritional compounds against the blood-brain barrier to efficiently distribute them in the brain. This review spotlights the role and effectiveness of curcumin and its derivatives in AD. Besides, the gut metabolism of curcumin and the effects of nanoparticles and their possible activity as diagnostic and therapeutic agents in AD also discussed.


Sign in / Sign up

Export Citation Format

Share Document