Oxidative Stress Targeting Amyloid Beta Accumulation and Clearance in Alzheimer’s Disease: Insight into Pathological Mechanisms and Therapeutic Strategies

2020 ◽  
Vol 9 (1) ◽  
pp. 22-42
Author(s):  
Sunpreet Kaur ◽  
Puneet Kumar ◽  
Shamsher Singh

Background: Alzheimer’s disease is the most common neurodegenerative disorder affecting the elderly population and emerges as a leading challenge for the scientific research community. The wide pathological aspects of AD made it a multifactorial disorder and even after long time it’s difficult to treat due to unexplored etiological factors. Methods: The etiogenesis of AD includes mitochondrial failure, gut dysbiosis, biochemical alterations but deposition of amyloid-beta plaques and neurofibrillary tangles are implicated as major hallmarks of neurodegeneration in AD. The aggregates of these proteins disrupt neuronal signaling, enhance oxidative stress and reduce activity of various cellular enzymes which lead to neurodegeneration in the cerebral cortex, neocortex and hippocampus. The metals like copper, aluminum are involved in APP trafficking and promote amyloidbeta aggregation. Similarly, disturbed ubiquitin proteasomal system, autophagy and amyloid- beta clearance mechanisms exert toxic insult in the brain. Result and conclusion : The current review explored the role of oxidative stress in disruption of amyloid homeostasis which further leads to amyloid-beta plaque formation and subsequent neurodegeneration in AD. Presently, management of AD relies on the use of acetylcholinesterase inhibitors, antioxidants and metal chelators but they are not specific measures. Therefore, in this review, we have widely cited the various pathological mechanisms of AD as well as possible therapeutic targets.

2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Maja Jazvinšćak Jembrek ◽  
Patrick R. Hof ◽  
Goran Šimić

Alzheimer’s disease (AD), the most common chronic and progressive neurodegenerative disorder, is characterized by extracellular deposits of amyloidβ-peptides (Aβ) and intracellular deposits of hyperphosphorylated tau (phospho-tau) protein. Ceramides, the major molecules of sphingolipid metabolism and lipid second messengers, have been associated with AD progression and pathology via Aβgeneration. Enhanced levels of ceramides directly increase Aβthrough stabilization ofβ-secretase, the key enzyme in the amyloidogenic processing of Aβprecursor protein (APP). As a positive feedback loop, the generated oligomeric and fibrillar Aβinduces a further increase in ceramide levels by activating sphingomyelinases that catalyze the catabolic breakdown of sphingomyelin to ceramide. Evidence also supports important role of ceramides in neuronal apoptosis. Ceramides may initiate a cascade of biochemical alterations, which ultimately leads to neuronal death by diverse mechanisms, including depolarization and permeabilization of mitochondria, increased production of reactive oxygen species (ROS), cytochrome c release, Bcl-2 depletion, and caspase-3 activation, mainly by modulating intracellular signalling, particularly along the pathways related to Akt/PKB kinase and mitogen-activated protein kinases (MAPKs). This review summarizes recent findings related to the role of ceramides in oxidative stress-driven neuronal apoptosis and interplay with Aβin the cascade of events ending in neuronal degeneration.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
S. C. Dyall

Alzheimer's disease is the most common form of dementia in the elderly and is a progressive neurodegenerative disorder characterised by a decline in cognitive function and also profound alterations in mood and behaviour. The pathology of the disease is characterised by the presence of extracellular amyloid peptide deposits and intracellular neurofibrillary tangles in the brain. Although many hypotheses have been put forward for the aetiology of the disease, increased inflammation and oxidative stress appear key to be features contributing to the pathology. The omega-3 polyunsaturated fats, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) have well-characterised effects on inflammation and may have neuroprotective effects in a number of neurodegenerative conditions including Alzheimer's disease. The aims of this paper are to review the neuroprotective effects of EPA and DHA in Alzheimer's disease, with special emphasis on their role in modulating oxidative stress and inflammation and also examine their potential as therapeutic agents.


2013 ◽  
Vol 20 (37) ◽  
pp. 4648-4664 ◽  
Author(s):  
S. Chakrabarti ◽  
M. Sinha ◽  
I. Thakurta ◽  
P. Banerjee ◽  
M. Chattopadhyay

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Li Zuo ◽  
Benjamin T. Hemmelgarn ◽  
Chia-Chen Chuang ◽  
Thomas M. Best

An increasing number of studies have proposed a strong correlation between reactive oxygen species (ROS)-induced oxidative stress (OS) and the pathogenesis of Alzheimer’s disease (AD). With over five million people diagnosed in the United States alone, AD is the most common type of dementia worldwide. AD includes progressive neurodegeneration, followed by memory loss and reduced cognitive ability. Characterized by the formation of amyloid-beta (Aβ) plaques as a hallmark, the connection between ROS and AD is compelling. Analyzing the ROS response of essential proteins in the amyloidogenic pathway, such as amyloid-beta precursor protein (APP) and beta-secretase (BACE1), along with influential signaling programs of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and c-Jun N-terminal kinase (JNK), has helped visualize the path between OS and Aβoverproduction. In this review, attention will be paid to significant advances in the area of OS, epigenetics, and their influence on Aβplaque assembly. Additionally, we aim to discuss available treatment options for AD that include antioxidant supplements, Asian traditional medicines, metal-protein-attenuating compounds, and histone modifying inhibitors.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Corona Solana ◽  
Raquel Tarazona ◽  
Rafael Solana

Alzheimer’s disease (AD) represents the most common cause of dementia in the elderly. AD is a neurodegenerative disorder characterized by progressive memory loss and cognitive decline. Although the aetiology of AD is not clear, both environmental factors and heritable predisposition may contribute to disease occurrence. In addition, inflammation and immune system alterations have been linked to AD. The prevailing hypothesis as cause of AD is the deposition in the brain of amyloid beta peptides (Aβ). Although Aβ have a role in defending the brain against infections, their accumulation promotes an inflammatory response mediated by microglia and astrocytes. The production of proinflammatory cytokines and other inflammatory mediators such as prostaglandins and complement factors favours the recruitment of peripheral immune cells further promoting neuroinflammation. Age-related inflammation and chronic infection with herpes virus such as cytomegalovirus may also contribute to inflammation in AD patients. Natural killer (NK) cells are innate lymphoid cells involved in host defence against viral infections and tumours. Once activated NK cells secrete cytokines such as IFN-γ and TNF-α and chemokines and exert cytotoxic activity against target cells. In the elderly, changes in NK cell compartment have been described which may contribute to the lower capacity of elderly individuals to respond to pathogens and tumours. Recently, the role of NK cells in the immunopathogenesis of AD is discussed. Although in AD patients the frequency of NK cells is not affected, a high NK cell response to cytokines has been described together with NK cell dysregulation of signalling pathways which is in part involved in this altered behaviour.


Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4410 ◽  
Author(s):  
Jéssika P. Teixeira ◽  
Alexandre A. de Castro ◽  
Flávia V. Soares ◽  
Elaine F. F. da Cunha ◽  
Teodorico C. Ramalho

Alzheimer’s disease (AD) is a neurodegenerative disease that is usually accompanied by aging, increasingly being the most common cause of dementia in the elderly. This disorder is characterized by the accumulation of beta amyloid plaques (Aβ) resulting from impaired amyloid precursor protein (APP) metabolism, together with the formation of neurofibrillary tangles and tau protein hyperphosphorylation. The exacerbated production of reactive oxygen species (ROS) triggers the process called oxidative stress, which increases neuronal cell abnormalities, most often followed by apoptosis, leading to cognitive dysfunction and dementia. In this context, the development of new therapies for the AD treatment is necessary. Antioxidants, for instance, are promising species for prevention and treatment because they are capable of disrupting the radical chain reaction, reducing the production of ROS. These species have also proven to be adjunctive to conventional treatments making them more effective. In this sense, several recently published works have focused their attention on oxidative stress and antioxidant species. Therefore, this review seeks to show the most relevant findings of these studies.


2020 ◽  
Vol 10 (4) ◽  
pp. 232
Author(s):  
Antaripa Bhattacharya ◽  
Antonella Izzo ◽  
Nunzia Mollo ◽  
Filomena Napolitano ◽  
Adriana Limone ◽  
...  

Alzheimer’s disease (AD) is a fatal neurodegenerative disorder caused by protein misfolding and aggregation, affecting brain function and causing dementia. Amyloid beta (Aβ), a peptide deriving from amyloid precursor protein (APP) cleavage by-and γ-secretases, is considered a pathological hallmark of AD. Our previous study, together with several lines of evidence, identified a strict link between APP, Aβ and 37/67kDa laminin receptor (LR), finding the possibility to regulate intracellular APP localization and maturation through modulation of the receptor. Here, we report that in fibroblasts from familial AD (fAD), APP was prevalently expressed as an immature isoform and accumulated preferentially in the transferrin-positive recycling compartment rather than in the Golgi apparatus. Moreover, besides the altered mitochondrial network exhibited by fAD patient cells, the levels of pAkt and pGSK3 were reduced in respect to healthy control fibroblasts and were accompanied by an increased amount of secreted Aβ in conditioned medium from cell cultures. Interestingly, these features were reversed by inhibition of 37/67kDa LR by NSC47924 a small molecule that was able to rescue the “typical” APP localization in the Golgi apparatus, with consequences on the Aβ level and mitochondrial network. Altogether, these findings suggest that 37/67kDa LR modulation may represent a useful tool to control APP trafficking and Aβ levels with implications in Alzheimer’s disease.


Author(s):  
Marta Goschorska ◽  
Izabela Gutowska ◽  
Irena Baranowska-Bosiacka ◽  
Katarzyna Piotrowska ◽  
Emilia Metryka ◽  
...  

It has been reported that donepezil and rivastigmine, the acetylcholinesterase (AchE) inhibitors commonly used in the treatment of Alzheimer’s disease (AD), do not only inhibit AChE but also have antioxidant properties. As oxidative stress is involved in AD pathogenesis, in our study we attempted to examine the influence of donepezil and rivastigmine on the activity of antioxidant enzymes and glutathione concentration in macrophages—an important source of reactive oxygen species and crucial for oxidative stress progression. The macrophages were exposed to sodium fluoride induced oxidative stress. The antioxidant enzymes activity and concentration of glutathione were measured spectrophotometrically. The generation of reactive oxygen species was visualized by confocal microscopy. The results of our study showed that donepezil and rivastigmine had a stimulating effect on catalase activity. However, when exposed to fluoride-induced oxidative stress, the drugs reduced the activity of some antioxidant enzymes (Cat, SOD, GR). These observations suggest that the fluoride-induced oxidative stress may suppress the antioxidant action of AChE inhibitors. Our results may have significance in the clinical practice of treatment of AD and other dementia diseases.


2020 ◽  
Vol 21 (21) ◽  
pp. 8014
Author(s):  
Sudip Dhakal ◽  
Ian Macreadie

Alzheimer’s Disease (AD) is a progressive multifactorial age-related neurodegenerative disorder that causes the majority of deaths due to dementia in the elderly. Although various risk factors have been found to be associated with AD progression, the cause of the disease is still unresolved. The loss of proteostasis is one of the major causes of AD: it is evident by aggregation of misfolded proteins, lipid homeostasis disruption, accumulation of autophagic vesicles, and oxidative damage during the disease progression. Different models have been developed to study AD, one of which is a yeast model. Yeasts are simple unicellular eukaryotic cells that have provided great insights into human cell biology. Various yeast models, including unmodified and genetically modified yeasts, have been established for studying AD and have provided significant amount of information on AD pathology and potential interventions. The conservation of various human biological processes, including signal transduction, energy metabolism, protein homeostasis, stress responses, oxidative phosphorylation, vesicle trafficking, apoptosis, endocytosis, and ageing, renders yeast a fascinating, powerful model for AD. In addition, the easy manipulation of the yeast genome and availability of methods to evaluate yeast cells rapidly in high throughput technological platforms strengthen the rationale of using yeast as a model. This review focuses on the description of the proteostasis network in yeast and its comparison with the human proteostasis network. It further elaborates on the AD-associated proteostasis failure and applications of the yeast proteostasis network to understand AD pathology and its potential to guide interventions against AD.


2010 ◽  
Vol 5 (1) ◽  
pp. 12
Author(s):  
Daniela Galimberti ◽  
Chiara Fenoglio ◽  
Elio Scarpini ◽  
◽  
◽  
...  

Alzheimer's disease (AD) is the most common cause of dementia in the elderly, whereas frontotemporal lobar degeneration (FTLD) is the most frequent neurodegenerative disorder with a pre-senile onset. The two major neuropathological hallmarks of AD are extracellular amyloid beta plaques and intracellular neurofibrillary tangles. In FTLD the deposition of tau has been observed in a number of cases, but in several brains there is no deposition of tau but instead a positivity for ubiquitin. In some families these diseases are inherited in an autosomal dominant fashion. Genes responsible for familial AD include the amyloid precursor protein (APP), presenilin 1 (PS1) and presenilin 2 (PS2), whereas the main genes responsible for familial FTLD are microtubule-associated protein tau gene (MAPT) and progranulin (GRN). Concerning sporadic AD, it is known that the presence of the ε4 allele of the apolipoprotein E gene is a susceptibility factor. A number of additional genetic factors contribute to susceptibility for AD and FTLD.


Sign in / Sign up

Export Citation Format

Share Document