scholarly journals Busulfan as a Myelosuppressive Agent for Generating Stable High-level Bone Marrow Chimerism in Mice

Author(s):  
Kyle Peake ◽  
John Manning ◽  
Coral-Ann Lewis ◽  
Christine Barr ◽  
Fabio Rossi ◽  
...  
2021 ◽  
Vol 10 (4) ◽  
pp. 867
Author(s):  
Katarzyna Skorka ◽  
Paulina Wlasiuk ◽  
Agnieszka Karczmarczyk ◽  
Krzysztof Giannopoulos

Functional toll-like receptors (TLRs) could modulate anti-tumor effects by activating inflammatory cytokines and the cytotoxic T-cells response. However, excessive TLR expression could promote tumor progression, since TLR-induced inflammation might stimulate cancer cells expansion into the microenvironment. Myd88 is involved in activation NF-κB through TLRs downstream signaling, hence in the current study we provided, for the first time, a complex characterization of expression of TLR2, TLR4, TLR7, TLR9, and MYD88 as well as their splicing forms in two distinct compartments of the microenvironment of chronic lymphocytic leukemia (CLL): peripheral blood and bone marrow. We found correlations between MYD88 and TLRs expressions in both compartments, indicating their relevant cooperation in CLL. The MYD88 expression was higher in CLL patients compared to healthy volunteers (HVs) (0.1780 vs. 0.128, p < 0.0001). The TLRs expression was aberrant in CLL compared to HVs. Analysis of survival curves revealed a shorter time to first treatment in the group of patients with low level of TLR4(3) expression compared to high level of TLR4(3) expression in bone marrow (13 months vs. 48 months, p = 0.0207). We suggest that TLRs expression is differentially regulated in CLL but is similarly shared between two distinct compartments of the microenvironment.


2004 ◽  
Vol 2 (1) ◽  
pp. 33-41 ◽  
Author(s):  
KENNETH L. KIRSH ◽  
JOHN H. McGREW ◽  
STEVEN D. PASSIK

Objective: Screening for adjustment disorder (AD) in cancer patients presents a significant clinical challenge. As seen in Part I of this research, conventional, existing measures are rather poor at detecting this most common of psychiatric diagnoses. Bone marrow transplantation (BMT) has a high level of morbidity that can cause significant stress for patients faced with the procedure.Methods: A sample of 95 BMT patients completed a semistructured interview and a novel self-report instrument, the Coping Flexibility Scale for Cancer (C-Flex), to determine if it could identify patients with adjustment disorder in need of further assessment and intervention.Results: The screen yielded four factors but was not predictive of AD. However, the C-Flex was significantly related to the presence of any disorder (r = −0.44, p < 0.001) in this sample. In addition, Factor I of the screen was found to be correlated to the presence of any diagnosis (r = −0.44, p < 0.001) and to have adequate sensitivity (81.63%) and specificity (76.09%).Significance of results: Either because of problems with the scale or the amorphous nature of the AD category, or both, rapid identification of patients with this common problem has proven to be elusive.


2005 ◽  
Vol 80 (11) ◽  
pp. 1541-1545 ◽  
Author(s):  
Jonathan D. Powell ◽  
Courtney Fitzhugh ◽  
Elizabeth M. Kang ◽  
Mathew Hsieh ◽  
Ronald H. Schwartz ◽  
...  

Blood ◽  
2002 ◽  
Vol 100 (6) ◽  
pp. 2225-2234 ◽  
Author(s):  
William H. Peranteau ◽  
Satoshi Hayashi ◽  
Michael Hsieh ◽  
Aimen F. Shaaban ◽  
Alan W. Flake

Abstract Clinical application of allogeneic bone marrow transplantation (BMT) has been limited by toxicity related to cytoreductive conditioning and immune response. In utero hematopoietic stem cell transplantation (IUHSCT) is a nonablative approach that achieves mixed chimerism and donor-specific tolerance but has been limited by minimal engraftment. We hypothesized that mixed chimerism achieved by IUHSCT could be enhanced after birth by nonmyeloablative total body irradiation (TBI) followed by same-donor BMT. To test this hypothesis, mixed chimerism was created by IUHSCT in a major histocompatibility complex-mismatched strain combination. After birth, chimeric animals received nonmyeloablative TBI followed by transplantation of donor congenic bone marrow cells. Our results show that: (1) low-level chimerism after IUHSCT can be enhanced to high-level chimerism by this strategy; (2) enhancement of chimerism is dependent on dose of TBI; (3) the mechanism of TBI enhancement is via a transient competitive advantage for nonirradiated hematopoietic stem cells; (4) engraftment observed in the tolerant, fully allogeneic IUHSC transplant recipient is equivalent to a congenic recipient; and (5) host-reactive donor lymphocytes are deleted with no evidence of graft-versus-host disease. This study supports the concept of prenatal tolerance induction to facilitate nonmyeloablative postnatal strategies for cellular therapy. If clinically applicable, such an approach could dramatically expand the application of IUHSCT.


2001 ◽  
Vol 15 (9) ◽  
pp. 599-603 ◽  
Author(s):  
Robert P Myers ◽  
Mark G Swain ◽  
Stefan J Urbanski ◽  
Samuel S Lee

Reactivation of hepatitis B virus (HBV) is a recognized complication of bone marrow transplantation (BMT). Lamivudine is a nucleoside analogue with potent antiviral activity that has been used in the prophylaxis of HBV reactivation in at-risk BMT recipients. Currently, no data exist regarding the safety of nucleoside analogue withdrawal in these patients. A 32-year-old BMT recipient with hepatitis B e antigen (HBeAg)-negative, chronic HBV who developed a serious flare of hepatic inflammation due to a rebound in viral replication within 12 weeks of discontinuing lamivudine therapy is described. The patient remained HBeAg-negative despite high level viremia, suggesting the emergence of a mutant viral strain. The patient's acute hepatitis resolved promptly with the reinstitution of lamivudine therapy. Further studies are necessary to define the safety and efficacy of nucleoside analogues in the prevention of HBV reactivation in at-risk BMT recipients. Clinicians should consider the risk of inducing serious flares of hepatic inflammation due to abrupt nucleoside analogue withdrawal in these patients.


2009 ◽  
Vol 30 (3) ◽  
pp. 603-615 ◽  
Author(s):  
Anna Smirkin ◽  
Hiroaki Matsumoto ◽  
Hisaaki Takahashi ◽  
Akihiro Inoue ◽  
Masahiko Tagawa ◽  
...  

In a transient 90-min middle cerebral artery occlusion (MCAO) model of rats, a large ischemic lesion is formed where macrophage-like cells massively accumulate, many of which express a macrophage marker, Iba1, and an oligodendrocyte progenitor cell marker, NG2 chondroitin sulfate proteoglycan (NG2); therefore, the cells were termed BINCs (Brain Iba1+/NG2+Cells). A bone marrow transplantation experiment using green-fluorescent protein-transgenic rats showed that BINCs were derived from bone marrow. 5-Fluorouracil (5FU) injection at 2 days post reperfusion (2 dpr) markedly reduced the number of BINCs at 7 dpr, causing enlargement of necrotic volumes and frequent death of the rats. When isolated BINCs were transplanted into 5FU-aggravated ischemic lesion, the volume of the lesion was much reduced. Quantitative real-time RT-PCR showed that BINCs expressed mRNAs encoding bFGF, BMP2, BMP4, BMP7, GDNF, HGF, IGF-1, PDGF-A, and VEGF. In particular, BINCs expressed IGF-1 mRNA at a very high level. Immunohistochemical staining showed that IGF-1-expressing BINCs were found not only in rat but also human ischemic brain lesions. These results suggest that bone marrow-derived BINCs play a beneficial role in ischemic brain lesions, at least in part, through secretion of neuroprotective factors.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4202-4202
Author(s):  
Congjun Yao ◽  
William D. Martin ◽  
Kimberly Works ◽  
Garth Austin

Abstract The myeloperoxidase (MPO) gene is expressed specifically in immature myeloid cells and not to a detectable extent in other cell types or in more mature myeloid cells. Furthermore, the MPO gene is actively transcribed both in normal myeloblasts (MPO protein constitutes about 5% of total protein in granulocytes) and in the myeloblasts of the majority of acute myeloid leukemias, but not in lymphoid leukemias or non-myeloid tumors. This has led to use of MPO activity for many years as the defining cytochemical marker for myeloid differentiation in anatomic pathology. We were the first to purify the human MPO promoter and to dissect many of its regulatory elements. Later, we showed the existence of three distinct human MPO promoters. More recently, we demonstrated that only one of these, which we term “P1”, is responsible for most of the physiologic MPO transcription of the human MPO gene. While until recently, purified human (or murine) MPO promoter constructs have exhibited only partial tissue specificity, we recently obtained a human MPO promoter construct whose specificity in cell culture mimics that of MPO gene expression seen in vivo. Comparison of many different promoter constructs reveals optimal, myeloid-specific activity for a construct extending from bp −4193 in the 5′-flanking region of the MPO gene to bp +15, just downstream from the transcription start site. Inclusion of additional downstream sequences did not increase promoter activity or specificity. We have now developed transgenic murine lines in which 4.2 kb of human MPO proximal 5′ flanking region DNA was linked to an adjacent downstream Renilla luciferase reporter (MPORLUC). A series of founder mouse lines were screened by PCR assays of DNA extracted from the tail vein for the presence of the MPO promoter-Renilla luciferase construct. Five founder mouse lines were positive for the transgene by the PCR assay. Transgenic and control mice (founders or offspring) were sacrificed and all possible tissues were examined for Renilla luciferase activity by an enzymatic assay (Promega). High-level Renilla luciferase activity was observed in two founder lines but only one of these founders produced offspring. In each of multiple different mice belonging to the founder line which was successfully mated, high-level Renilla luciferase activity was evident in bone marrow of femur and to a variable degree in vertebral bone marrow. In mice younger than four months old, a modest-level of luciferase activity was also observed in spleen. Luciferase activity was at or near background levels in thymus, heart, lung, liver, kidney, stomach, colon, bladder, brain, skeletal muscle, skin and small intestine in all of the MPORLUC transgenic mice. All tissues in wild type mice lacked measurable Renilla luciferase activity. Interestingly, there has been a slightly higher level of deaths in the luciferase-positive transgenic mice than in controls, suggesting an as yet uncharacterized toxic effect of the transgene. These results indicate that the human MPO promoter construct used in these studies exhibits tissue specificity of activity. Such a promoter might be useful for future gene targeting studies or for gene therapy.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3530-3530
Author(s):  
Patricia A Taylor ◽  
Ryan M Kelly ◽  
Michael J Ehrhardt ◽  
Bruce R. Blazar

Abstract Abstract 3530 Poster Board III-467 FTY720 (FTY), a sphingosine-1-phosphate receptor agonist, inhibits lymphocyte egress from lymphoid tissues although the complete mechanism of its immunomodulatory effects is not fully understood. We previously published that FTY inhibited but did not prevent graft-versus-host disease by multiple mechanisms. Using the same dose and schedule (3 mg/kg orally d0-28) we evaluated FTY for its effect on allogeneic bone marrow (BM) engraftment in sublethally-irradiated mice. C57BL/6 mice were irradiated with 5.0 Gy total body irradiation (TBI) on day -1, and received 107 T-cell depleted BALB/c BM cells on day 0. At 5 wks, FTY-treated mice had a mean 84% ± 4% (mean ± SEM, n=47) donor chimerism in peripheral blood leukocytes (PBL) versus 5% ± 2% in water-treated controls (n=38, p<0.001). However, engraftment promotion was transient in most mice. PBL phenotyping at 3 months revealed that mean donor chimerism decreased to 22% ± 6%. Of the 32 mice that were >90% donor at 5 wks, only 6 were >50% donor at 3 months indicating that even high level donor chimeras were subject to delayed graft rejection. We found that although FTY promoted robust donor engraftment in the NK, myeloid and B cell lineages in BM, spleen, and lymph nodes by the first week after transplantation, thymopoiesis was severely impaired at 1 month resulting in near absent donor (and also host) thymic T cell production. FTY-treated mice had very low thymocyte cellularity (<7×106, n=10). Most thymocytes (65-85%) were host CD4 or CD8 single positive T cells. We hypothesized that upon cessation of FTY, which prevents thymocyte egress, the mature host single positive T cells were released into the periphery and mediated delayed graft rejection. Consistent with this hypothesis, the in vivo depletion of host T cells but not host NK cells, at the time of cessation of FTY treatment, abrogated the loss of the donor graft indicating that host T cells were responsible for delayed graft rejection. Also consistent with our hypothesis, and demonstrating the immune competence of the host T cells retained in the thymus, the adoptive transfer of thymocytes from FTY-treated engrafted mice into lethally-irradiated C57BL/6 recipients mediated donor BALB/c BM rejection. To further examine the mechanism of early and robust albeit transient engraftment promotion in some cell lineages, but near absent thymopoiesis, we evaluated the absolute number of donor lin−Sca-1+cKit+ stem cells in the BM at 1 month. For these experiments, an engrafted control was deemed to be a more useful comparator than water-treated mice that rejected their graft. To ensure an engrafted control using the same TBI and allogeneic cell dose parameters, control mice were given peri-transplant injections of anti-CD4 and anti-CD8, a strategy that depletes host T cells and results in durable high level donor chimeras. Consistent with reports that FTY supports migration and bone marrow homing of stem cells, FTY-treated mice had a 4.9-fold increase in the absolute number of donor lin−Sca-1+cKit+ stem cells in the BM compartment compared to anti-CD4/8-treated mice. We hypothesized that the lack of donor thymopoiesis was the result of common lymphoid progenitors being trapped in the BM compartment and unable to migrate to and/or enter the thymus. Consistent with this hypothesis, FTY-treated mice had 125-fold fewer donor-type linlocKithiCD25− early thymic progenitors (ETPs) compared to anti-CD4/8-treated control mice. In contrast to FTY-treated mice, anti-CD4/8-treated mice had evidence of vigorous donor thymopoiesis. Collectively these data indicate that although FTY supports donor stem cell migration/homing to the BM and early donor NK, myeloid and B cell engraftment, the block in donor thymopoiesis and retention of thymic host T cells result in only transient engraftment in most sublethally-irradiated mice. These data have important implications in the use of FTY in BMT and further warrant examination of thymopoiesis in patients receiving FTY for immune suppression. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document