scholarly journals Dry Film Photoresist-based Electrochemical Microfluidic Biosensor Platform: Device Fabrication, On-chip Assay Preparation, and System Operation

Author(s):  
Richard Bruch ◽  
André Kling ◽  
Gerald A. Urban ◽  
Can Dincer
RSC Advances ◽  
2014 ◽  
Vol 4 (97) ◽  
pp. 54847-54853 ◽  
Author(s):  
R. Courson ◽  
S. Cargou ◽  
V. Conedera ◽  
M. Fouet ◽  
M. C. Blatche ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 239
Author(s):  
Yineng Wang ◽  
Xi Cao ◽  
Walter Messina ◽  
Anna Hogan ◽  
Justina Ugwah ◽  
...  

Capillary electrochromatography (CEC) is a separation technique that hybridizes liquid chromatography (LC) and capillary electrophoresis (CE). The selectivity offered by LC stationary phase results in rapid separations, high efficiency, high selectivity, minimal analyte and buffer consumption. Chip-based CE and CEC separation techniques are also gaining interest, as the microchip can provide precise on-chip control over the experiment. Capacitively coupled contactless conductivity detection (C4D) offers the contactless electrode configuration, and thus is not in contact with the solutions under investigation. This prevents contamination, so it can be easy to use as well as maintain. This study investigated a chip-based CE/CEC with C4D technique, including silicon-based microfluidic device fabrication processes with packaging, design and optimization. It also examined the compatibility of the silicon-based CEC microchip interfaced with C4D. In this paper, the authors demonstrated a nanofabrication technique for a novel microchip electrochromatography (MEC) device, whose capability is to be used as a mobile analytical equipment. This research investigated using samples of potassium ions, sodium ions and aspirin (acetylsalicylic acid).


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3234
Author(s):  
Insun Shin ◽  
Kyoungmin Koo ◽  
Daeil Kwon

Electronic products and systems are widely used in industrial network systems, control devices, and data acquisition devices across many industry sectors. Failures of such electronic systems might lead to unexpected downtime, loss of productivity, additional work for repairs, and delay in product and service development. Thus, developing an appropriate sensing technique is necessary, because it is the first step in system fault diagnosis and prognosis. Many sensing techniques often require external and additional sensing devices, which might disturb system operation and consequently increase operating costs. In this study, we present an on-chip health sensing method for non-destructive and non-invasive interconnect degradation detection. Bit error rate (BER), which represents data integrity during digital signal transmission, was selected to sense interconnect health without connecting external sensing devices. To verify the health sensing performance, corrosion tests were conducted with in situ monitoring of the BER and direct current (DC) resistance. The eye size, extracted from the BER measurement, showed the highest separation between the intact and failed interconnect, as well as a gradual transition, compared with abrupt changes in the DC resistance, during interconnect degradation. These experimental results demonstrate the potential of the proposed sensing method for on-chip interconnect health monitoring applications without disturbing system operation.


2018 ◽  
Vol 1 (1) ◽  
pp. 13
Author(s):  
Denny Dermawan

The desire of students of SMK Muhammadiyah 2 Salam Magelang to be able to make a printed circuit board is something that is very important to be welcomed and followed up wisely so that the desire of the students is not just a wishful dream but will be a reality. This activity is meant to be an effort not only to overcome difficulties at certain times (short-term activities), but is expected to be sustainable for the future (longer term). Looking at the fact, of course, should be strived to realize the handling of the problem at least for the near term. For that required activities that are practical and immediate benefits can be taken as the activity can be a short course or short training. To solve the problem, it is realized by holding a short course / training course on PCB Layout Creation with DIP TRACE and Dry Film Photoresist technology followed by etching process, drilling and installation of components that will be useful for students who want to do the main final work related with the manufacture of tools / hardware. Keywords: Making PCB, DIP TRACE, Dry Photoresist film


Biosensors ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 202
Author(s):  
Rosario Iemmolo ◽  
Valentina La Cognata ◽  
Giovanna Morello ◽  
Maria Guarnaccia ◽  
Mariamena Arbitrio ◽  
...  

Background: Antineoplastic agents represent the most common class of drugs causing Adverse Drug Reactions (ADRs). Mutant alleles of genes coding for drug-metabolizing enzymes are the best studied individual risk factors for these ADRs. Although the correlation between genetic polymorphisms and ADRs is well-known, pharmacogenetic tests are limited to centralized laboratories with expensive or dedicated instrumentation used by specialized personnel. Nowadays, DNA chips have overcome the major limitations in terms of sensibility, specificity or small molecular detection, allowing the simultaneous detection of several genetic polymorphisms with time and costs-effective advantages. In this work, we describe the design of a novel silicon-based lab-on-chip assay able to perform low-density and high-resolution multi-assay analysis (amplification and hybridization reactions) on the In-Check platform. Methods: The novel lab-on-chip was used to screen 17 allelic variants of three genes associated with adverse reactions to common chemotherapeutic agents: DPYD (Dihydropyrimidine dehydrogenase), MTHFR (5,10-Methylenetetrahydrofolate reductase) and TPMT (Thiopurine S-methyltransferase). Results: Inter- and intra assay variability were performed to assess the specificity and sensibility of the chip. Linear regression was used to assess the optimal hybridization temperature set at 52 °C (R2 ≈ 0.97). Limit of detection was 50 nM. Conclusions: The high performance in terms of sensibility and specificity of this lab-on-chip supports its further translation to clinical diagnostics, where it may effectively promote precision medicine.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 810
Author(s):  
Jorge Prada ◽  
Christina Cordes ◽  
Carsten Harms ◽  
Walter Lang

This contribution outlines the design and manufacturing of a biosensor for retrieval and detection of bacteria RNA. The device is fully made of Cyclo-Olefin Copolymer (COC), which features low auto-fluorescence, biocompatibility and manufacturability by hot-embossing. The RNA retrieval is carried on after bacteria heat-lysis by an on-chip micro-heater. Two additional carbon resistive temperature sensors printed on the biochip sealing film monitor the heating process. RNA is hybridized with capture probes on the reaction chamber surface and identification is achieved by detection of fluorescence tags. The application of the mentioned techniques and materials facilitates the development of low-cost, disposable albeit multi-functional microfluidic system, performing heating, temperature sensing and chemical reaction processes in the same device. By proving its effectiveness, this device contributes a reference to show the potential of fully thermoplastic devices as biosensors.


Sign in / Sign up

Export Citation Format

Share Document