scholarly journals Second-Order Statistical Methods GLCM for Authentication Systems

2021 ◽  
Vol 17 (1) ◽  
pp. 1-6
Author(s):  
Mohammed Taha ◽  
Hanaa Ahmed

For many uses, biometric systems have gained considerable attention. Iris identification was One of the most powerful sophisticated biometrical techniques for effective and confident authentication. The current iris identification system offers accurate and reliable results based on near-infrared light (NIR) images when images are taken in a restricted area with fixed-distance user cooperation. However, for the color eye images obtained under visible wavelength (VW) without collaboration among the users, the efficiency of iris recognition degrades because of noise such as eye blurring images, eye lashing, occlusion, and reflection. This work aims to use the Gray-Level Co- occurrence Matrix (GLCM) to retrieve the iris's characteristics in both NIR iris images and visible spectrum. GLCM is second-order Statistical-Based Methods for Texture Analysis. The GLCM-based extraction technology was applied after the preprocessing method to extract the pure iris region's characteristics. The Energy, Entropy, Correlation, homogeneity, and Contrast collection of second-order statistical features are determined from the generated co-occurrence matrix, Stored as a vector for numerical features. This approach is used and evaluated on the CASIA v1and ITTD v1 databases as NIR iris image and UBIRIS v1 as a color image. The results showed a high accuracy rate (99.2 %) on CASIA v1, (99.4) on ITTD v1, and (87%) on UBIRIS v1 evaluated by comparing to the other methods

ISRN Zoology ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-7
Author(s):  
Yuta Shiino ◽  
Kota Kitazawa

The selective advantage of empire red coloration in the shell of Laqueus rubellus (a terebratulid brachiopod) was examined in terms of prey-predator interactions. The study was based on a comparison of benthic suspension feeders living at a depth of about 130 m in Suruga Bay, Japan, with special reference to their visibility under visible and near-infrared light conditions. Almost all species exhibited red coloration under visible light, while only the shell of Laqueus was dark under infrared light, similar to rocks and bioclasts. Given the functional eyes of macropredators such as fishes and coleoids, which are specialized to detect light in the blue-to-green visible spectrum, and even the long-wavelength photoreceptors of malacosteids, Laqueus should avoid both visible and infrared detection by predators inhabiting the sublittoral bottom zone. This fact suggests that terebratulids have evolved the ability to remain essentially invisible even as the optic detection abilities of predators have improved. The present hypothesis leads to the possibility that the appearance of marine organisms is associated with the passive defensive strategy, making possible to provide a lower predation risk.


In most iris identification systems, the complete image acquires constraints are understood. These Constrain include near-infrared (NIR) illumination to release the iris texture and close distance from the capturing device. In recent advances to different illumination technologies introduced in images captured in the environment. This environment includes a visible wavelength (VW) light source at-a-distance over the close distance from the capturing device. For accurate Iris identification at-a-distance, eye images require improvement of effective strategies, while setting the light source at a distance from the planar view of the iris. Effectively performing feature extraction technique for Near-Infrared and Visible wavelength images, that were collected in an uncontrolled stage. The identification of iris accuracy on the publicly available databases was then measured. This paper presents a preprocessing of Iris Recognition using Hough Transform (HT) for Iris Area of interest (AOI) and rubber-sheeting the model captured using linear stretching and rotation for normalization. The HT is used to filter and contrast stretch the iris regions from multispectral iris images. A basic purpose of this research is to envelop a design and implement IRIS-recognition at a distance (IAAD) by adopting a frequency and wavelength-based Hough transform for accurate feature selection [1][2]. The proposed method is described as follows: Initially, the input iris image will be subjected to pre-processing while extracting features with differences from local extrema and maxima conditions, using a regular shape filling Hough transform [3][4]. The iris localization and detection consists of a hill climbing segmentation approach that is based on geometric shape Hough measure. Proposed in comparison to the contemporary


2020 ◽  
Vol 48 (6) ◽  
pp. 2657-2667
Author(s):  
Felipe Montecinos-Franjola ◽  
John Y. Lin ◽  
Erik A. Rodriguez

Noninvasive fluorescent imaging requires far-red and near-infrared fluorescent proteins for deeper imaging. Near-infrared light penetrates biological tissue with blood vessels due to low absorbance, scattering, and reflection of light and has a greater signal-to-noise due to less autofluorescence. Far-red and near-infrared fluorescent proteins absorb light >600 nm to expand the color palette for imaging multiple biosensors and noninvasive in vivo imaging. The ideal fluorescent proteins are bright, photobleach minimally, express well in the desired cells, do not oligomerize, and generate or incorporate exogenous fluorophores efficiently. Coral-derived red fluorescent proteins require oxygen for fluorophore formation and release two hydrogen peroxide molecules. New fluorescent proteins based on phytochrome and phycobiliproteins use biliverdin IXα as fluorophores, do not require oxygen for maturation to image anaerobic organisms and tumor core, and do not generate hydrogen peroxide. The small Ultra-Red Fluorescent Protein (smURFP) was evolved from a cyanobacterial phycobiliprotein to covalently attach biliverdin as an exogenous fluorophore. The small Ultra-Red Fluorescent Protein is biophysically as bright as the enhanced green fluorescent protein, is exceptionally photostable, used for biosensor development, and visible in living mice. Novel applications of smURFP include in vitro protein diagnostics with attomolar (10−18 M) sensitivity, encapsulation in viral particles, and fluorescent protein nanoparticles. However, the availability of biliverdin limits the fluorescence of biliverdin-attaching fluorescent proteins; hence, extra biliverdin is needed to enhance brightness. New methods for improved biliverdin bioavailability are necessary to develop improved bright far-red and near-infrared fluorescent proteins for noninvasive imaging in vivo.


2020 ◽  
Author(s):  
Alex Stafford ◽  
Dowon Ahn ◽  
Emily Raulerson ◽  
Kun-You Chung ◽  
Kaihong Sun ◽  
...  

Driving rapid polymerizations with visible to near-infrared (NIR) light will enable nascent technologies in the emerging fields of bio- and composite-printing. However, current photopolymerization strategies are limited by long reaction times, high light intensities, and/or large catalyst loadings. Improving efficiency remains elusive without a comprehensive, mechanistic evaluation of photocatalysis to better understand how composition relates to polymerization metrics. With this objective in mind, a series of methine- and aza-bridged boron dipyrromethene (BODIPY) derivatives were synthesized and systematically characterized to elucidate key structure-property relationships that facilitate efficient photopolymerization driven by visible to NIR light. For both BODIPY scaffolds, halogenation was shown as a general method to increase polymerization rate, quantitatively characterized using a custom real-time infrared spectroscopy setup. Furthermore, a combination of steady-state emission quenching experiments, electronic structure calculations, and ultrafast transient absorption revealed that efficient intersystem crossing to the lowest excited triplet state upon halogenation was a key mechanistic step to achieving rapid photopolymerization reactions. Unprecedented polymerization rates were achieved with extremely low light intensities (< 1 mW/cm<sup>2</sup>) and catalyst loadings (< 50 μM), exemplified by reaction completion within 60 seconds of irradiation using green, red, and NIR light-emitting diodes.


Author(s):  
Alexander Richards ◽  
Matthew Weschler ◽  
Michael Durller

Abstract To help solve the navigational problem, i.e., being able to successfully locate a circuit for probing or editing without destroying chip functionality, a near-infrared (NIR), near-ultraviolet (NUV), and visible spectrum camera system was developed that attaches to most focused ion beam (FIB) or scanning electron microscope vacuum chambers. This paper reviews the details of the design and implementation of the NIR/NUV camera system, as instantiated upon the FEI FIB 200, with a particular focus on its use for the visualization of buried structures, and also for non-destructive real time area of interest location and end point detection. It specifically considers the use of the micro-optical camera system for its benefit in assisting with frontside and backside circuit edit, as well as other typical FIB milling activities. The quality of the image obtained by the IR camera rivals or exceeds traditional optical based imaging microscopy techniques.


2020 ◽  
Vol 59 (11) ◽  
pp. 110906
Author(s):  
Juan Shen ◽  
Yong Ren ◽  
Xinxin Zhu ◽  
Min Mao ◽  
Quan Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document