scholarly journals Ethnobotanical Profile of Weed Flora of District Charsadda, Khyber Pakhtunkhwa

2018 ◽  
Vol 9 (1) ◽  
pp. 14-23
Author(s):  
Muhammad Nauman Khan ◽  
Abdul Razzaq ◽  
Fazal Hadi ◽  
Naushad Khan ◽  
Abdul Basit ◽  
...  

District Charsadda is a very important center of plant biodiversity in the central plain of Peshawar valley, Pakistan. The present study was carried out during March 2015 to April 2016 to investigate the ethnobotanical profile of common weed flora present in district Charsadda, KP, Pakistan. The study revealed that there were 40 weed species belonging to 21 families. Among them 25 weeds were annual herb, 9 weeds were perennial herb, three were annual grass, one was climbing herb, one was the parasitic weed, and one was rhizomatic grass. The dominant families were Asteraceae, Fabaceae and poaceae having 5 species (12.5%) each followed by Ranunculaceae 3 species (7.5%). plants were systematically arranged into botanical names, local names, families, habit, habitat, partly used, flowering periods, locality and ethnobotanical uses. The main aim of the study is the documentation and ethnobotanical information of the weed flora growing in the area.

2014 ◽  
Vol 63 (1) ◽  
pp. 139-148 ◽  
Author(s):  
Éva Lehoczky ◽  
M. Kamuti ◽  
N. Mazsu ◽  
J. Tamás ◽  
D. Sáringer-Kenyeres ◽  
...  

Plant nutrition is one of the most important intensification factors of crop production. The utilization of nutrients, however, may be modified by a number of production factors, including weed presence. Thus, the knowledge of occurring weed species, their abundance, nutrient and water uptake is extremely important to establish an appropriate basis for the evaluation of their risks or negative effects on crops. That is why investigations were carried out in a long-term fertilization experiment on the influence of different nutrient supplies (Ø, PK, NK, NPK) on weed flora in maize field.The weed surveys recorded similar diversity on the experimental area: the species of A. artemisiifolia, S. halepense and D. stramonium were dominant, but C. album and C. hybridum were also common. These species and H. annuus were the most abundant weeds.Based on the totalized and average data of all treatments, density followed the same tendency in the experimental years. It was the highest in the PK treated and untreated plots, and significantly exceeded the values of NK fertilized areas. Presumably the better N availability promoted the development of nitrophilic weeds, while the mortality of other small species increased.Winter wheat and maize forecrops had no visible influence on the diversity and the intensity of weediness. On the contrary, there were consistent differences in the density of certain weed species in accordance to the applied nutrients. A. artemisiifolia was present in the largest number in the untreated control and PK fertilized plots. The density of S. halepense and H. annuus was also significantly higher in the control areas. The number of their individuals was smaller in those plots where N containing fertilizers were used. Contrary to them, the density of D. stramonium, C. album and C. hybridum was the highest in the NPK treatments.


2017 ◽  
Vol 35 (0) ◽  
Author(s):  
A. TANVEER ◽  
M.M. JAVAID ◽  
R.N. ABBAS ◽  
H.H. ALI ◽  
M.Q. NAZIR ◽  
...  

ABSTRACT Catchfly (Silene conoidea), an annual herb, is usually recognized as an emerging weed species in Eurasia and North America. The presence of somatic seed polymorphism might aid in the adaptation of this weed in different climatic conditions. We conducted laboratory and greenhouse experiments to study the seed polymorphism and influence of various environmental factors like temperature, salt stress, osmotic stress and burial depth on the germination and emergence characteristics of catchfly. Optimum germination of seeds of all colors was recorded at a temperature of 15 oC. Germination of catchfly seeds of all colors followed decreasing trend as NaCl concentration increased from 50 mM to 200 mM. Seed germination was maximum (87-96%) at 0 MPa but gradually decreased to 40% as osmotic stress increases up to -0.4 MPa and completely inhibited at 0.6 MPa of all seed colors. A slight increase (from 60 to 95%) in the germination of seeds of black and dark brown colors was observed when seeding depth increased from 0 to 2 cm but decreased when seeding depth increased from 2 to 4 cm in seeds of all colors. There was no emergence of catchfly at seeding depth of 6 cm or greater. Our results concluded that catchfly seeds have the potential to germinate and emerge in various environmental conditions, but germination/emergence percentage of seeds of all colors will be different in different environmental conditions. Soil amendments including deep ploughing may aid for the successful management of this weed in cultivated areas.


2016 ◽  
Vol 34 (1) ◽  
pp. 143-150 ◽  
Author(s):  
R. CASTILLO-MATAMOROS ◽  
A. BRENES-ANGULO ◽  
F. HERRERA-MURILLO ◽  
L. GÓMEZ ALPÍZAR.

Rottboellia cochinchinensis is an annual grass weed species known as itchgrass, or "caminadora" in America´s Spanish speaking countries, and has become a major and troublesome weed in several crops. The application of fluazifop-P-butyl at recommended rates (125 g a.i. ha-1) was observed to be failing to control itchgrass in a field in San José, Upala county, Alajuela province, Costa Rica. Plants from the putative resistant R. cochinchinensis population survived fluazifop-P-butyl when treated with 250 g a.i. ha-1 (2X label rate) at the three- to four-leaf stage under greenhouse conditions. PCR amplification and sequencing of partial carboxyl transferase domain (CT) of the acetyl-CoA carboxylase (ACCase) gene were used to determine the molecular mechanism of resistance. A single non-synonymous point mutation from TGG (susceptible plants) to TGC (putative resistant plants) that leads to a Trp-2027-Cys substitution was found. This Trp-2027-Cys mutation is known to confer resistance to all aryloxyphenoxyproprionate (APP) herbicides to which fluazifop-P-butyl belongs. To the best of our knowledge, this is the first report of fluazifop-P-butyl resistance and a mutation at position 2027 for a Costa Rican R. cochinchinensis population.


Weed Science ◽  
2020 ◽  
pp. 1-19
Author(s):  
Lauren M. Schwartz-Lazaro ◽  
Lovreet S. Shergill ◽  
Jeffery A. Evans ◽  
Muthukumar V. Bagavathiannan ◽  
Shawn C. Beam ◽  
...  

Abstract Seed shatter is an important weediness trait on which the efficacy of harvest weed seed control (HWSC) depends. The level of seed shatter in a species is likely influenced by agroecological and environmental factors. In 2016 and 2017, we assessed seed shatter of eight economically important grass weed species in soybean [Glycine max (L.) Merr.] from crop physiological maturity to four weeks after maturity at multiple sites spread across eleven states in the southern, northern, and mid-Atlantic U.S. From soybean maturity to four weeks after maturity, cumulative percent seed shatter was lowest in the southern U.S. regions and increased as the states moved further north. At soybean maturity, the percent of seed shatter ranged from 1 to 70%. That range had shifted to 5 to 100% (mean: 42%) by 25 days after soybean maturity. There were considerable differences in seed shatter onset and rate of progression between sites and years in some species that could impact their susceptibility to HWSC. Our results suggest that many summer annual grass species are likely not ideal candidates for HWSC, although HWSC could substantially reduce their seed output at during certain years.


2018 ◽  
Vol 32 (6) ◽  
pp. 707-713 ◽  
Author(s):  
Brendan A. Metzger ◽  
Nader Soltani ◽  
Alan J. Raeder ◽  
David C. Hooker ◽  
Darren E. Robinson ◽  
...  

AbstractTolpyralate is a new Group 27 pyrazolone herbicide that inhibits the 4-hydroxyphenyl-pyruvate dioxygenase enzyme. In a study of the biologically effective dose of tolpyralate from 2015 to 2017 in Ontario, Canada, tolpyralate exhibited efficacy on a broader range of species when co-applied with atrazine; however, there is limited published information on the efficacy of tolpyralate and tolpyralate+atrazine relative to mesotrione and topramezone, applied POST with atrazine at label rates, for control of annual grass and broadleaf weeds. In this study, tolpyralate applied alone at 30 g ai ha−1 provided >90% control of common lambsquarters, velvetleaf, common ragweed, Powell amaranth/redroot pigweed, and green foxtail at 8 weeks after application (WAA). Addition of atrazine was required to achieve >90% control of wild mustard, ladysthumb, and barnyardgrass at 8 WAA. Tolpyralate+atrazine (30+1,000 g ai ha−1) and topramezone+atrazine (12.5+500 g ai ha−1) provided similar control at 8 WAA of the eight weed species in this study; however, tolpyralate+atrazine provided >90% control of green foxtail by 1 WAA. Tolpyralate+atrazine provided 18, 68, and 67 percentage points better control of common ragweed, green foxtail, and barnyardgrass, respectively, than mesotrione+atrazine (100+280 g ai ha−1) at 8 WAA. Overall, tolpyralate+atrazine applied POST provided equivalent or improved control of annual grass and broadleaf weeds compared with mesotrione+atrazine and topramezone+atrazine.


1994 ◽  
Vol 8 (1) ◽  
pp. 23-27 ◽  
Author(s):  
David L. Jordan ◽  
John W. Wilcut ◽  
Leslie D. Fortner

Field experiments conducted in 1988 and 1989 evaluated clomazone alone and in a systems approach for weed control in peanut. Clomazone PPI at 0.8 kg ai/ha controlled common ragweed, prickly sida, spurred anoda, and tropic croton better than ethalfluralin and/or metolachlor applied PPI. POST application of acifluorfen plus bentazon was not needed to control these weeds when clomazone was used. Acifluorfen plus bentazon improved control of these weeds when clomazone was not used and generally were necessary to obtain peanut yields regardless of the soil-applied herbicides. Alachlor PRE did not improve clomazone control of any weed species evaluated. Fall panicum and large crabgrass control was similar with clomazone or clomazone plus ethalfluralin.


Weed Science ◽  
2016 ◽  
Vol 64 (1) ◽  
pp. 129-136 ◽  
Author(s):  
Ariel A. D. Larson ◽  
Mark J. Renz ◽  
David E. Stoltenberg

Switchgrass is a potential feedstock for cellulosic bioenergy production. Weed competition from annual grass during the establishment year can reduce switchgrass establishment and resulting productivity, but the relationship between early season grass densities and outcomes of competition are not well understood. We measured how a range of giant and yellow foxtail densities in the establishment year influenced switchgrass establishment and resulting productivity in the first production year (second year of the growing season). In two of the three site–yr more than four foxtail plants m−2reduced switchgrass plant densities below documented thresholds of establishment success. A lesser effect of foxtails in the third site–year suggested that higher switchgrass emergence rates reduced foxtail competitive ability during establishment. Effects on yield were consistent over the three site–yr. The yield (10.96 Mg ha−1± 0.77) decreased rapidly as foxtail density increased. One foxtail plant m−2reduced switchgrass yield in the first production year by 25%, and yield loss was 90% or greater at densities > 50 foxtail plants m−2. Although switchgrass can establish in the presence of foxtail competition, these weed species should be controlled to maximize yields in the first production year.


2017 ◽  
Vol 44 (2) ◽  
pp. 93-99 ◽  
Author(s):  
O.W. Carter ◽  
E.P. Prostko ◽  
J.W. Davis

ABSTRACT The increase in herbicide-resistant weeds over the past decade has led to the introduction of crops that are resistant to auxin herbicides. Strict application procedures are required for the use of auxin herbicides in auxin-resistant crops to minimize off-target movement. One requirement for application is the use of nozzles that will minimize drift by producing coarse droplets. Generally, an increase in droplet size can lead to a reduction in coverage and efficacy depending upon the herbicide and weed species. In studies conducted in 2015 and 2016, two of the potential required auxin nozzle types [(AIXR11002 (coarse) and TTI11002 (ultra-coarse)] were compared to a conventional flat-fan drift guard nozzles [DG11002 (medium)] for weed control in peanut herbicide systems. Nozzle type did not influence annual grass or Palmer amaranth control in non-crop tests. Results from in-crop tests indicated that annual grass control was 5% to 6% lower when herbicides were applied with the TTI nozzle when compared to the AIXR or DG nozzles. However, Palmer amaranth control and peanut yield was not influenced by coarse-droplet nozzles. Peanut growers using the coarse-droplet nozzles need to be aware of potential reduced grass control.


1993 ◽  
Vol 2 (6) ◽  
pp. 525-536 ◽  
Author(s):  
Jukka Salonen

Weed vegetation of spring cereal fields in southern and central Finland was analyzed by ordination methods to provide a community level description of weed populations. Attention was paid particularly to the relative importance of environmental factors affecting weed incidence such as crop management, soil properties and weather conditions. A data set of 33 weed taxa from 252 fields was subjected to both indirect and direct gradient analysis. Indirect ordination was obtained with correspondence analysis (CA), and direct gradient analyses were performed with redundancy analysis (RDA) and with canonical correspondence analysis (CCA) relating environmental factors to the occurrence of weeds. Among several management factors, continuous herbicide use explained best the variation in the species composition of weed flora. Weed vegetation was also associated with soil type, moisture conditions and soil pHH2O. Ordination diagrams visualized the species-environment interactions and detected characteristic weed species for different geographical regions. In addition to ordination analyses of weed flora, the level and structure of weed infestation are described. The density of weeds averaged 170 plants m2 (median=124) and the air-dry weight of weeds 320 kg ha-1 (median=183). The average weed density was the same in different soil types, but the weed biomass was lower in clay soils than in coarse mineral and organic soils


Sign in / Sign up

Export Citation Format

Share Document