scholarly journals Mechanical Behaviors of Al-Based Metal Composites Fabricated by Stir Casting Technique

2020 ◽  
Vol 01 (04) ◽  
pp. 144-149
Author(s):  
Mostafizur Rahman ◽  
Sadnan Mohosin Mondol

Recently, the demands of composite materials used in various engineering applications are growing higher because of their outstanding mechanical and thermal properties. This study represents an experimental investigation to determine mechanical properties of Al-based composites materials using Cu and SiC as reinforcement. Al-30-wt%-Cu, Al-40-wt%-Cu, Al-30-wt%-SiC, and Al-40-wt%-SiC composite bars were fabricated using stir casting process to ensure uniform distribution of reinforced elements. The composite bars were prepared into required shape to conduct test for evaluating mechanical properties. Al-40-wt%-Cu shows improved properties such as, hardness, strength, and impact energy absorption than Al-30-wt%-Cu due to more presence of Cu content. Al-30-wt%-Cu and Al-40-wt%-Cu bars showed improved mechanical properties than both Al-30-wt%-SiC and Al-40-wt%-SiC. It is also seen that Al-30-wt%-Cu and Al-40-wt%-Cu showed high hardness, yield strength, and impact energy absorption compared to Al-30-wt%-SiC and Al-40-wt%-Cu respectively. On the other hand, Al-30-wt%-Cu is 3.5% lightweight than Al-30-wt%-SiC and Al-40-wt%-Cu is 2.11% lightweight than Al-40-wt%-SiC. Al-30-wt%-Cu and Al-40-wt%-Cu showed improved specific hardness, specific yield strength, and specific impact energy absorption compared to Al-30-wt%-SiC and Al-40-wt%-Cu respectively. In addition, Al-40-wt%-Cu showed better mechanical properties among the bars.

2018 ◽  
Vol 941 ◽  
pp. 2018-2023
Author(s):  
Paul Royes ◽  
Nicolas Masquelier ◽  
Thierry Breville ◽  
David Balloy

Aluminum-Carbon nanoFibers (CNF) composites produce by stir casting process present a yield strengths (YS) and an ultimate tensile strength (UTS) improved up to 33%. The hardening of the Al-CNF composite was considered as the sum of elementary contributions of effects: natural hardness of pure Al; grain size; dislocation density; elements in solid solution; CNF. In order to quantify CNF effect, calculation was performed to quantify the contribution to yield strength of each other’s mechanisms. This theoretical calculation was compared to experimental results and the real effect of CNF on yield strength increase was estimated between 10 and 16%. Figure SEQ Figure \* ARABIC 1: Graphical Abstract (copper dots on CNF / stir casting process / contributions to hardening) Keywords: Aluminum matrix composite; copper-coated carbon nanofibers; liquid metallurgy elaboration; mechanical properties; hardening effect


2015 ◽  
Vol 766-767 ◽  
pp. 308-314 ◽  
Author(s):  
Madeva Nagaral ◽  
V. Auradi ◽  
S.A. Kori

In the present study, the experimental results of the mechanical properties of Al6061-Graphite composites presented. The composites containing 6 to 9 wt% of graphite in steps of 3 wt% were prepared using liquid metallurgy route in particular stir casting technique. For each composite, reinforcement particles were preheated to a temperature of 250°C and then dispersed in steps of two into the vortex of molten Al6061 alloy to improve the wettability and distribution. Microstructural characterization was investigated by optical and scanning electron microscopy. Tensile and hardness tests were carried out in order to identify mechanical properties of composites. The results of microstructural study revealed uniform distribution of graphite particles and low porosity in micro composite specimens.The results of this study revealed that as graphite percentage was increased, there was significant increase in ultimate tensile strength, yield strength and ductility, accompanied by a nominal drop in the hardness of the material


1970 ◽  
Vol 36 (3) ◽  
pp. 34-43
Author(s):  
A. Apasi ◽  
D. S. Yawas ◽  
S. Abdulkareem ◽  
M. Y. Kolawole

This paper investigates the microstructure and mechanical properties of aluminum alloy (Al-Si-Fe) reinforced with coconut shell-ash particulate. The aluminium (Al-Si-Fe) alloy composite was produced by a double-stir casting process at a speed of 700 rpm for 10 and 5 minutes at first and second stirring respectively. The samples produced from addition of 0-15 wt% coconut shellash particles (CSAp) were prepared and subjected to microstructural and mechanical properties testing. The results of the microstructural analysis of the composite reveal a fairly uniform distribution of the coconut shell-ash particles in the matrix with increase in volume fraction of CSAp. The mechanical property test results revealed that, hardness of the developed composite increased with increasing percentage weight of CSAp. Also the tensile and yield strength at 0.2% offset values of Al-Si-Fe/CSAp composite increased with percentage increase in CSAp up to 9% addition above which a little decrease in both tensile and yield strength was observed.Keywords: Matrix, coconut shell, mechanical properties, stir- casting, particulate, reinforcements


2015 ◽  
Vol 787 ◽  
pp. 568-572 ◽  
Author(s):  
A. Radha ◽  
K.R. Vijayakumar

Composite materials like Aluminium metal matrix composite is playing a very important role in manufacturing industries e.g. automobile and aerospace industries, due to their superior properties such as light weight, low density, high specific modulus, high fatigue strength etc., In this study Aluminium(Al 6061) is reinforced with Silicon Carbide particles and fabricated by Stir Casting Technique (vortex method). The MMC rectangular bars (samples) are prepared with Al6061 and SiC (28 µ size) as the reinforced particles by weight fraction from 0%, 5%, 10%, and 15% of SiC. The microstructure analysis and Mechanical properties like Tensile Strength, Vickers Hardness and Charpy Impact Strength were investigated on prepared specimens. It is observed that the properties are increased with increasing of reinforced specimens by weight fraction.


2021 ◽  
Vol 73 (6) ◽  
pp. 980-985
Author(s):  
Kalaiyarasan A ◽  
Sundaram S ◽  
Gunasekaran K ◽  
Bensam Raj J.

Purpose Aerospace field is demanding a material with superior strength and high resistance against wear, tear and corrosion. The current study aimed to develop a new material with high performance to be applicable in aerospace field Design/methodology/approach A metal matrix composite AA8090-WC-ZrC was fabricated using stir casting method and its tribological behavior was investigated. Totally, five composites viz. AA/Z, AA/W, AA/WZ (1:3), AA/WZ (1:1) & AA/WZ (3:1) were prepared. Micro hardness, tensile and wear study were performed on the fabricated composites and the results were compared with AA8090 alloy Findings Vickers hardness test resulted that the AA/W composite showed the higher hardness value of 160 HB compared to other materials due to the reinforcing effect of WC particles with high hardness. Tensile test reported that the AA/W composite displayed the maximum tensile strength of 502 MPa owing to the creation of more dislocation density. Further, wear study showed that the AA/W composite exhibited the least wear rate of 0.0011 mm3/m because of the more resisting force offered by the WC particles. Furthermore, the AA/W composite showed the slightest mass loss of 0.0028 g and lower COF value of 0.31 due to the hinder effect of WC particle to the movement of atoms in AA8090 alloy Originality/value This work is original in the field of aerospace engineering and materials science which deals with the fabrication of AA8090 alloy with the reinforcement particles such as tungsten carbide and zirconium carbide. The impact of the combination of hybrid particles and their volume fractions on the tribological properties has been investigated in this work. This work would provide new scientific information to society.


The present work was planned to evaluate the mechanical properties of alumina reinforced aluminium alloy such hardness and compression behavior of al2o3 /aa7075 alloy metal matrix composites. Both, experimental and finite element analyses were carried out to establish tensile behaviour of the composites with different weight percentage of al2o3 fabricated by the stir casting process. The results concluded that addition of alumina to the aa7075 improves the mechanical properties of the composite. Further the results of FEA simulation of the composites are close to the actual results which shows that cost and time can be reduced if FEA is performed


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Lokanadham Dharmana ◽  
Venkata Subbaiah Kambagowni

Purpose This study aims to develop the Al-Si-Mg metal matrix composite, reinforced distinctly with lime stone powder (LSP; 12% by weight) and Al2O3 (12% by weight), and compare their mechanical properties and tribological performance. Design/methodology/approach The composites are fabricated through stir casting process. In view of the previous work, the Al-LSP composite with LSP reinforcement (12 Wt.%) shows enhanced mechanical properties and tribological performance, as compared with other weight percentages. Findings Though the Al-LSP composite is less expensive, it shows similar hardness, tensile strength and specific strength, when compared with Al- Al2O3 composite. However, the Al-LSP composite exhibits significant enhancement of above three properties, when compared with Al-Si-Mg metal. The systematic factorial design of experiments is obtained through Taguchi OA [L9]. The tribological performance is estimated through wear rate (WR-mm3/m) and coefficient of friction (CF) by varying the operating parameters of sliding distance (SD), load (L) and sliding velocity (SV). According to ANOVA results, the optimal condition of WR for all the tested materials is L1SD3SV1. Further, the optimal condition of CF is L1SD1SV3 for Al-LSP and Al-Si-Mg metal, while L2SD3SV2 is for Al-Al2O3 composite. The regression equation predicts the measured experimental values within error band of ± 8 percentage. Originality/value A comparison of two composite materials (Al-LSP and Al-Al2O3) with same weight fractions (12%) shows almost same trend in both the mechanical and tribological testing process. However, the developed Al-LSP composite exhibited better properties than the Al-Al2O3 and Al-base. Therefore, Al-LSP can be suggested for automotive applications (i.e., connecting rod, cylinder liners, camshaft) and structural applications (such as frames, over hanging supports), without compromising in desirable original with properties of constituents in the new material, which is achievable for looking to the end uses.


Sign in / Sign up

Export Citation Format

Share Document