ENERGY EFFICIENT IMPROVEMENT OF HISTORIC BUILDINGS: A CASE STUDY IN SINOP

Author(s):  
Gökhan GENÇ ◽  
Figen BEYHAN

Although historical buildings are ecological with their construction systems and materials, they cannot provide necessary performance in today's comfort conditions and therefore they are abandoned and remain in a damaged or dysfunctional state. Energy efficient improvement works are carried out in historical buildings in order to bring the historical buildings today's conditions, re-use and ensure their sustainability. However, there are many limitations in these studies due to the heritage characteristics of historical buildings. With these limitations, the works to be done should be carried out with the least intervention without damaging the heritage values of the historical buildings. For this reason, it is necessary to specially select the applications to be realized within the scope of energy efficiency in historical buildings and scaling the physical effects of the applications relative to each other. In this context, in this study, it is aimed to reveal the appropriate improvement methods in order to reach the maximum energy efficiency with the least physical intervention, with the techniques suitable for the historical texture by preserving the original qualities in the historical buildings. Based on the Historic England intervention evaluation scale developed in this framework, 5 scenarios, including the current situation and 4 different design scenarios, including interventions from small to large impacts, were created on a sample historical residential building, and the data of each scenario in terms of energy consumption were obtained. Models created within the framework of the scenarios were evaluated with the Design Builder simulation program, and annual heating and cooling loads and the amount of energy consumed per total m² were obtained. Evaluations were made by comparing the energy efficiency of applications at different degrees with the graphics and tables prepared in the light of these data. As a result, suggestions have been developed regarding the interventions to be made to historical buildings according to the intervention effect sizes in the context of energy efficiency with the evaluations made.

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3876
Author(s):  
Sameh Monna ◽  
Adel Juaidi ◽  
Ramez Abdallah ◽  
Aiman Albatayneh ◽  
Patrick Dutournie ◽  
...  

Since buildings are one of the major contributors to global warming, efforts should be intensified to make them more energy-efficient, particularly existing buildings. This research intends to analyze the energy savings from a suggested retrofitting program using energy simulation for typical existing residential buildings. For the assessment of the energy retrofitting program using computer simulation, the most commonly utilized residential building types were selected. The energy consumption of those selected residential buildings was assessed, and a baseline for evaluating energy retrofitting was established. Three levels of retrofitting programs were implemented. These levels were ordered by cost, with the first level being the least costly and the third level is the most expensive. The simulation models were created for two different types of buildings in three different climatic zones in Palestine. The findings suggest that water heating, space heating, space cooling, and electric lighting are the highest energy consumers in ordinary houses. Level one measures resulted in a 19–24 percent decrease in energy consumption due to reduced heating and cooling loads. The use of a combination of levels one and two resulted in a decrease of energy consumption for heating, cooling, and lighting by 50–57%. The use of the three levels resulted in a decrease of 71–80% in total energy usage for heating, cooling, lighting, water heating, and air conditioning.


2021 ◽  
Vol 11 (13) ◽  
pp. 6005
Author(s):  
Daniel Villanueva ◽  
Moisés Cordeiro-Costas ◽  
Andrés E. Feijóo-Lorenzo ◽  
Antonio Fernández-Otero ◽  
Edelmiro Miguez-García

The aim of this paper is to shed light on the question regarding whether the integration of an electric battery as a part of a domestic installation may increase its energy efficiency in comparison with a conventional case. When a battery is included in such an installation, two types of electrical conversion must be considered, i.e., AC/DC and DC/AC, and hence the corresponding losses due to these converters must not be forgotten when performing the analysis. The efficiency of the whole system can be increased if one of the mentioned converters is avoided or simply when its dimensioning is reduced. Possible ways to achieve this goal can be: to use electric vehicles as DC suppliers, the use of as many DC home devices as possible, and LED lighting or charging devices based on renewables. With all this in mind, several scenarios are proposed here in order to have a look at all possibilities concerning AC and DC powering. With the aim of checking these scenarios using real data, a case study is analyzed by operating with electricity consumption mean values.


Author(s):  
Hugo Hens

Since the 1990s, the successive EU directives and related national or regional legislations require new construction and retrofits to be as much as possible energy-efficient. Several measures that should stepwise minimize the primary energy use for heating and cooling have become mandated as requirement. However, in reality, related predicted savings are not seen in practice. Two effects are responsible for that. The first one refers to dweller habits, which are more energy-conserving than the calculation tools presume. In fact, while in non-energy-efficient ones, habits on average result in up to a 50% lower end energy use for heating than predicted. That percentage drops to zero or it even turns negative in extremely energy-efficient residences. The second effect refers to problems with low-voltage distribution grids not designed to transport the peaks in electricity whensunny in summer. Through that, a part of converters has to be uncoupled now and then, which means less renewable electricity. This is illustrated by examples that in theory should be net-zero buildings due to the measures applied and the presence of enough photovoltaic cells (PV) on each roof. We can conclude that mandating extreme energy efficiency far beyond the present total optimum value for residential buildings looks questionable as a policy. However, despite that, governments and administrations still seem to require even more extreme measurements regarding energy efficiency.


2013 ◽  
pp. 1027-1046 ◽  
Author(s):  
Hakan Hisarligil ◽  
Sule Karaaslan

This chapter presents a methodological approach to residential block design for sustainable urban development for hot-summer and cold-winter climates. Taking Ankara as a case, its focus is on developing an energy efficient design process as regards residential block geometry with optimum performance for both climate and energy use. The numerous variables analyzed are orientation, building geometry and envelope, heating and cooling loads of buildings, and microclimatic conditions including solar radiation, air, and wall temperature, and wind speed. It is also important in this study to demonstrate the potential use of “free and user-friendly” simulation tools for such analysis in the early design phase for those who are not experts but have moderate knowledge of urban microclimate and energy. For this aim Weather Tool v2.00 for climate and passive design analysis, CASAnova 3.0 for building energy analysis, and ENVI-met 3.0 for microclimatic analysis are used.


2016 ◽  
Vol 819 ◽  
pp. 541-545 ◽  
Author(s):  
Sholahudin ◽  
Azimil Gani Alam ◽  
Chang In Baek ◽  
Hwataik Han

Energy consumption of buildings is increasing steadily and occupying approximately 30-40% of total energy use. It is important to predict heating and cooling loads of a building in the initial stage of design to find out optimal solutions among various design options, as well as in the operating stage after the building has been completed for energy efficient operation. In this paper, an artificial neural network model has been developed to predict heating and cooling loads of a building based on simulation data for building energy performance. The input variables include relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area, and glazing area distribution of a building, and the output variables include heating load (HL) and cooling load (CL) of the building. The simulation data used for training are the data published in the literature for various 768 residential buildings. ANNs have a merit in estimating output values for given input values satisfactorily, but it has a limitation in acquiring the effects of input variables individually. In order to analyze the effects of the variables, we used a method for design of experiment and conducted ANOVA analysis. The sensitivities of individual variables have been investigated and the most energy efficient solution has been estimated under given conditions. Discussions are included in the paper regarding the variables affecting heating load and cooling load significantly and the effects on heating and cooling loads of residential buildings.


2019 ◽  
Vol 12 (8) ◽  
pp. 2201-2213
Author(s):  
Josefin Borg ◽  
Hannes von Knorring

AbstractThis article explores the complexities of establishing knowledge-sharing practices between organizations through a case study of the creation of a database for energy efficiency measures relevant to the shipping sector. As researchers and policy-makers tend to point towards knowledge sharing and collaboration as means towards a more energy-efficient society, there is a need to better understand the knowledge sharing practices in such initiatives. The study is based upon extensive fieldwork where the first author was recruited to a collaborative network on energy efficiency in the shipping sector, to aid in the development of the collaboration while carrying out participatory-observational research in an ethnographic tradition. The study highlights the need to maintain realistic expectations for new knowledge-sharing collaborations, and the necessity to allow such arrangements to develop over time.


2014 ◽  
Vol 548-549 ◽  
pp. 1815-1819 ◽  
Author(s):  
Xiao Chun Qin ◽  
She Gang Shao ◽  
Yi Shen

Green lighting technology has the advantages of energy efficiency, friendly environment, safety and comfort. Based on the introduction of green lighting technology, taken the Mt. Lushan West Sea tourist highway service as the case study, we analyzed light guide illumination, the optimum use of natural light and energy efficient lighting respectively from the aspects of technical characteristics and the specific highway service application. We finally made the economic analysis in the energy savings of green lights in the highway service, and the result showed that through the use of green lighting systems Mt. Lushan West Sea tourist highway service could save electricity and reduce operating costs 134,700 Yuan per year.


Sign in / Sign up

Export Citation Format

Share Document