scholarly journals "Overexpression of PTGS2/COX-2 (Prostaglandin– Endoperoxidase Synthase-2) Gene Induces Angiogenesis, Metastasis and Invasion in TNBC (Triple-Negative Breast Cancer) In Vitro Cell Lines by Overexpressed Fzd-6 (Frizzled Class Receptor) Wnt/ Ca++ Signaling Pathway"

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Vikas Kumar Maurya
2012 ◽  
Vol 30 (15_suppl) ◽  
pp. 1056-1056
Author(s):  
Cha Kyong Yom ◽  
Kyung-Min Lee ◽  
Wonshik Han ◽  
Sung-Won Kim ◽  
Hyeong-Gon Moon ◽  
...  

1056 Background: The Forkhead Box protein M1 (FoxM1) is known to regulate a variety of biologic processes in mammalian cells including cell growth and survival, angiogenesis, DNA damage response, chemotherapeutic drug resistance, and cancer cell migration and invasion. We evaluate the role and significance of Fox M1 in primary breast cancer in vitro and analyzed the relation with FoxM1 expression and clinicopathologic features. Methods: Immunohistochemical staining was used for evaluation of cytoplasmic expression of FoxM1 with TMA of invasive breast cancer. In various breast cancer cell lines, we evaluated FoxM1 expression and treated docetaxel/cisplatin in combination with Siomycin A (FoxM1 inhibitor) for BT20 cell line. Results: From Nov 1995 to Jul 2007, in 84 patients with stage 1-3 invasive breast cancer, FoxM1 expression was noted in 58.7%. Median follow-up duration was 85.1 months. Lymphovascular invasion was positively correlated with FoxM1 expression (p=0.040). In multivariate analysis, FoxM1 expression (p=0.005), HR negativity (p=0.002), high histologic grade (p=0.023), hign nuclear grade (p=0.045), lymphovascular invasiveness (p=0.017), and stage 3 cancer (p=0.015) matched poor disease-free survival. In vitro study, FoxM1 was expressed BT474, JIMT-1, BT20, HCC-1937, and MDA-MB-231 cell lines. The inhibition of FoxM1 had synergistic effect on cisplatin treatment, not docetaxel in BT20 cell. Conclusions: FoxM1 expression was noted in triple negative breast cancer cell lines and its inhibition had synergistically cytotoxic effect on BT20 cell line in combination with cisplatin. Although the further in vivo and clinical study should be needed to draw the solid conclusions, FoxM1 could be both a promising target of treatment for triple negative breast cancer and a independent prognostic factor.


SpringerPlus ◽  
2014 ◽  
Vol 3 (1) ◽  
pp. 417 ◽  
Author(s):  
Masato Terashima ◽  
Kazuko Sakai ◽  
Yosuke Togashi ◽  
Hidetoshi Hayashi ◽  
Marco A De Velasco ◽  
...  

2020 ◽  
Vol 12 (534) ◽  
pp. eaaw8275 ◽  
Author(s):  
Johanna M. Schafer ◽  
Brian D. Lehmann ◽  
Paula I. Gonzalez-Ericsson ◽  
Clayton B. Marshall ◽  
J. Scott Beeler ◽  
...  

Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer that does not respond to endocrine therapy or human epidermal growth factor receptor 2 (HER2)–targeted therapies. Individuals with TNBC experience higher rates of relapse and shorter overall survival compared to patients with receptor-positive breast cancer subtypes. Preclinical discoveries are needed to identify, develop, and advance new drug targets to improve outcomes for patients with TNBC. Here, we report that MYCN, an oncogene typically overexpressed in tumors of the nervous system or with neuroendocrine features, is heterogeneously expressed within a substantial fraction of primary and recurrent TNBC and is expressed in an even higher fraction of TNBCs that do not display a pathological complete response after neoadjuvant chemotherapy. We performed high-throughput chemical screens on TNBC cell lines with varying amounts of MYCN expression and determined that cells with higher expression of MYCN were more sensitive to bromodomain and extraterminal motif (BET) inhibitors. Combined BET and MEK inhibition resulted in a synergistic decrease in viability, both in vitro and in vivo, using cell lines and patient-derived xenograft (PDX) models. Our preclinical data provide a rationale to advance a combination of BET and MEK inhibitors to clinical investigation for patients with advanced MYCN-expressing TNBC.


2021 ◽  
Author(s):  
Qiu Jin ◽  
Bo Lin ◽  
Wenhui Zhao ◽  
Runyuan Ji

Abstract BackgroundMany studies indicate that microRNAs (miRNAs) play a crucial role in modulating the development and progression of triple-negative breast cancer (TNBC). However, miR-664b-3p affections on the TNBC functions and mechanisms are still unknown. The purpose of our study was to clarify the effects of miR-664b-3p in cellular TNBC development and progression.MethodsIn our study, the expressions of miR-664b-3p in cell lines and tissueswere tested by real-time PCR (RT-PCR), immunofluorescence, H&E and immunohistochemistry staining. CCK-8 assay, colony formation, EdU, flow cytometry apoptosis, wound scratch, Transwell assays were applied to explore the cell functions. The targeted relationship between miR-664b-3p and its target BRIP1 was determined by dual-luciferase reporter assay and rescue experiments. ResultsWe observed that miR-664b-3p was significantly decreased in TNBC cell lines. Overexpression of miR-664b-3p could observably inhibit cell proliferation, migration, invasion and induced apoptosis in vitro. Meanwhile, miR-664-3p suppressed TNBC tumor growth in vivo. Furthermore, luciferase reporter assays identified the interaction between 3’UTR of BRIP1 and miR-664b-3p. Moreover, we investigated the mechanisms underlying the effect of miR-664b-3p on cell functions, and the result showed that miR-664b-3p inhibited cell proliferation, invasion and accelerated apoptosis by targeting BRIP1.ConclusionFrom the above, our findings indicated that miR-664b-3p played a significant role in TNBC progression by targeting BRIP1, providing new therapeutic targets for diagnostic in TNBC.


2019 ◽  
Vol 3 (s1) ◽  
pp. 25-26
Author(s):  
Che-Pei Kung ◽  
Emily Bross ◽  
Emily Bramel ◽  
Eric Freeman ◽  
Thwisha Sabloak ◽  
...  

OBJECTIVES/SPECIFIC AIMS: Triple-negative breast cancer (TNBC) accounts for one-fifth of the breast cancer patient population. The heterogeneous nature of TNBC and lack of options for targeted therapy make its treatment a constant challenge. The co-deficiency of tumor suppressors p53 and ARF is a significant genetic signature enriched in TNBC, but it is not yet clear how TNBC is regulated by this genetic alteration. METHODS/STUDY POPULATION: To answer this question, we established p53/ARF-defective murine embryonic fibroblast (MEF) to study the molecular and phenotypic consequences in vitro. Moreover, transgenic mice were generated to investigate the effect of p53/ARF deficiency on mammary tumor development in vivo. RESULTS/ANTICIPATED RESULTS: Increased transformation capability was observed in p53/ARF-defective cells, and formation of aggressive mammary tumors was also seen in p53-/-ARF-/- mice. RNA-editing enzyme ADAR1 was identified as a potential mediator for the elevated oncogenic potential. Interestingly, we found that the overexpression of ADAR1 is also prevalent in human TNBC cell lines and patient specimen. Using short hairpin RNA (shRNA) to reduce ADAR1 expression abrogated the oncogenic potential of human TNBC cell lines, while non-TNBC cells are less susceptible. Different levels of RNA editing of known ADAR1 targets were detected in shRNA-treated human TNBC cell lines, suggesting that ADAR1-mediated RNA editing contributes to TNBC pathogenesis. DISCUSSION/SIGNIFICANCE OF IMPACT: These results indicate critical roles played by the tumor suppressors p53 and ARF in the pathogenesis of TNBC, partially through affecting ADAR1-mediated RNA editing. Further understanding of this pathway could shed light on potential vulnerabilities of TNBC and inform the development of personalized therapies based on patients’ genetic signiatures.


2021 ◽  
Vol 11 ◽  
Author(s):  
Juanjuan He ◽  
Jing Wang ◽  
Teng Li ◽  
Kunlun Chen ◽  
Songchao Li ◽  
...  

BackgroundTriple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer owing to a lack of effective targeted therapy and acquired chemoresistance. Here, we explored the function and mechanism of shank-interacting protein-like 1 (SIPL1) in TNBC progression.MethodsSIPL1 expression was examined in human TNBC tissues and cell lines by quantitative reverse transcription PCR, western blot, and immunohistochemistry. SIPL1 overexpression and silenced cell lines were established in BT-549 and MDA-MB-231 cells. The biological functions of SIPL1 in TNBC were studied in vitro using the CCK-8 assay, CellTiter-Glo Luminescent Cell Viability assay, caspase-3/8/9 assay, wound healing assay, and transwell assay and in vivo using a nude mouse model. The potential mechanisms underlying the effects of SIPL1 on TNBC progression were explored using bioinformatics analysis, luciferase reporter assays, and chromatin immunoprecipitation followed by qPCR.ResultsSIPL1 expression was higher in human TNBC tissues and cell lines than in adjacent normal tissues and a breast epithelial cell line (MCF10A). High expression of SIPL1 was positively correlated with poor overall and disease-free survival in patients with TNBC. SIPL1 overexpression elevated and SIPL1 silencing repressed the malignant phenotypes of TNBC cells in vitro. SIPL1 overexpression promoted xenograft tumor growth in vivo. Myc-associated zinc-finger protein (MAZ) transcriptionally activated SIPL1. Finally, we found that SIPL1 promoted TNBC malignant phenotypes via activation of the AKT/NF-κB signaling pathways.ConclusionsThese results indicate that the MAZ/SIPL1/AKT/NF-κB axis plays a crucial role in promoting the malignant phenotypes of TNBC cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yubao Zhang ◽  
Xiaoran Ma ◽  
Huayao Li ◽  
Jing Zhuang ◽  
Fubin Feng ◽  
...  

Triple negative breast cancer (TNBC) is a subtype of breast cancer with complex heterogeneity, high invasiveness, and long-term poor prognosis. With the development of molecular pathology and molecular genetics, the gene map of TNBC with distinctive biological characteristics has been outlined more clearly. Natural plant extracts such as paclitaxel, vinblastine, colchicine etc., have occupied an important position in the treatment of hormone-independent breast cancer. Ursolic acid (UA), a triterpenoid acid compound derived from apple, pear, loquat leaves, etc., has been reported to be effective in a variety of cancer treatments, but there are few reports on the treatment of TNBC. This study performed comprehensive bioinformatics analysis and in vitro experiments to identify the effect of UA on TNBC treatment and its potential molecular mechanism. Our results showed that UA could not only reduce the proliferation, migration, and invasion in MDA-MB-231 and MDA-MB-468 cell lines with a dose-dependent manner but also induce cell cycle arrest and apoptosis. Meanwhile, we collected the gene expression data GSE45827 and GSE65194 from GEO for comparison between TNBC and normal cell type and obtained 724 DEGs. Subsequently, PLK1 and CCNB1 related to TNBC were screened as the key targets via topological analysis and molecular docking, and gene set enrichment analysis identified the key pathway as the p53 signaling pathway. In addition, quantitative real-time PCR and western blot verified the key genes were PLK1 and CCNB1. In vivo and in vitro experiments showed that UA could inhibit the growth of TNBC cells, and down-regulate the protein expression levels of PLK1 and CCNB1 by mediating p53 signaling pathway. These findings provide strong evidence for UA intervention in TNBC via multi-target therapy.


Sign in / Sign up

Export Citation Format

Share Document