scholarly journals Identifying the Effect of Ursolic Acid Against Triple-Negative Breast Cancer: Coupling Network Pharmacology With Experiments Verification

2021 ◽  
Vol 12 ◽  
Author(s):  
Yubao Zhang ◽  
Xiaoran Ma ◽  
Huayao Li ◽  
Jing Zhuang ◽  
Fubin Feng ◽  
...  

Triple negative breast cancer (TNBC) is a subtype of breast cancer with complex heterogeneity, high invasiveness, and long-term poor prognosis. With the development of molecular pathology and molecular genetics, the gene map of TNBC with distinctive biological characteristics has been outlined more clearly. Natural plant extracts such as paclitaxel, vinblastine, colchicine etc., have occupied an important position in the treatment of hormone-independent breast cancer. Ursolic acid (UA), a triterpenoid acid compound derived from apple, pear, loquat leaves, etc., has been reported to be effective in a variety of cancer treatments, but there are few reports on the treatment of TNBC. This study performed comprehensive bioinformatics analysis and in vitro experiments to identify the effect of UA on TNBC treatment and its potential molecular mechanism. Our results showed that UA could not only reduce the proliferation, migration, and invasion in MDA-MB-231 and MDA-MB-468 cell lines with a dose-dependent manner but also induce cell cycle arrest and apoptosis. Meanwhile, we collected the gene expression data GSE45827 and GSE65194 from GEO for comparison between TNBC and normal cell type and obtained 724 DEGs. Subsequently, PLK1 and CCNB1 related to TNBC were screened as the key targets via topological analysis and molecular docking, and gene set enrichment analysis identified the key pathway as the p53 signaling pathway. In addition, quantitative real-time PCR and western blot verified the key genes were PLK1 and CCNB1. In vivo and in vitro experiments showed that UA could inhibit the growth of TNBC cells, and down-regulate the protein expression levels of PLK1 and CCNB1 by mediating p53 signaling pathway. These findings provide strong evidence for UA intervention in TNBC via multi-target therapy.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Anqi Ge ◽  
Lifang Liu ◽  
Xian’guang Deng ◽  
Jun Luo ◽  
Yanghua Xu

Objective. To explore the mechanism of baicalin intervention in breast cancer based on microRNA microarrays. Methods. The inhibitory rate of baicalin intervention in MCF-7 breast cancer cells was determined by MTT. Then, the miRNA microarrays were used to validate the key microRNAs. After that, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to validate microRNA, hsa-miR-15a, hsa-miR-100, hsa-miR-16, and hsa-miR-7t. Finally, the potential targets of these key microRNAs are predicted by miRWalk, and DAVID was utilized for gene ontology (GO) enrichment analysis and pathway enrichment analysis. Results. Baicalin may inhibit the proliferation of MCF-7 cells in a dose-dependent and time-dependent manner. The concentration of baicalin 150 μmol/L was determined for the subsequent miRNA chip research. A total of 92 upregulated microRNAs and 35 downregulated microRNAs were obtained. The upregulated miRNAs include hsa-miR-6799-5p, hsa-miR-6126, hsa-miR-4792, hsa-miR-6848-5p, hsa-miR-3197, hsa-miR-6779-5p, and hsa-miR -654-5p. The downregulated miRNAs include hsa-miR-3911, hsa-miR-504-5p, hsa-miR-30a-3p, hsa-miR-193b-3p, and hsa-miR-181b-5p. Then, differentially expressed miRNA was verified by qRT-PCR. The results showed that the expression of hsa-miR-15a, hsa-miR-100, hsa-miR-16, and hsa-let-7c was upregulated ( P < 0.05 ), which was consistent with the results of the miRNA microarray. The enrichment analysis showed that baicalin might regulate the DNA-templated proliferation, DNA-templated transcription, p53 signaling pathway, etc., of MCF-7 breast cancer cells through miRNA. Conclusion. Baicalin inhibits the proliferation of breast cancer cells. It may achieve antitumor effects through regulating microRNAs so as to affect the DNA replication (such as cellular response to DNA damage stimulus and DNA binding), RNA transcription (such as regulation of transcription, DNA-templated, transcription from RNA polymerase II promoter, and transcription factor binding), protein synthesis (such as mRNA binding, Golgi apparatus, and protein complex), endocytosis, pathways in cancer, p53 signaling pathway, and so on.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ragima Nadesh ◽  
Krishnakumar N. Menon ◽  
Lalitha Biswas ◽  
Ullas Mony ◽  
K. Subramania Iyer ◽  
...  

AbstractIn the present study, a protocol was developed for processing of human adipose derived mesenchymal stem cell secretome formulation of varying concentration. Its molecular composition was evaluated, and its effectiveness in vitro using breast cancer cell lines, and in vivo in a nude mice breast cancer model was studied to determine its role in suppressing triple negative breast cancer in a dose dependent manner. Because the secretome could have value as an add-on therapy along with a current drug, the effectiveness of the secretome both in monotherapy and in combination therapy along with paclitaxel was evaluated. The results showed significant cell kill when exposed to the secretome above 20 mg/ml at which concentration there was no toxicity to normal cells. 70 mg/ml of SF showed 90 ± 10% apoptosis and significant decrease in CD44+/CD24−, MDR1+ and PDL-1+ cancer cells. In vivo, the tumor showed no growth after daily intra tumor injections at 50 mg/ml and 100 mg/ml doses whereas substantial tumor growth occurred after saline intra tumor injection. The study concludes that SF is a potential biotherapeutic for breast cancer and could be used initially as an add-on therapy to other standard of care to provide improved efficacy without other adverse effects.


2020 ◽  
Author(s):  
Yajing Huang ◽  
Hao Wu ◽  
Xingrui Li

Abstract Background: Triple-negative breast cancer (TNBC) is a highly aggressive malignancy lack of sensitivity to chemo-, endocrine and targeted therapy. CDK4/6 inhibitors, combined with endocrine therapy, have been proven to be effective in postmenopausal women with HR-positive, HER2-negative advanced or metastatic breast cancer. So we investigated that whether CDK4/6 inhibitor palbociclib (PD) could enhance effects of cisplatin (CDDP) on TNBC.Methods: The effects of different drug regimens of PD and CDDP on MDA-MB-231 and RB-knockdown MDA-MB-231 (sh-MDA-MB-231) cells were assessed in vitro and vivo. MDA-MB-468 and RB-overexpression MDA-MB-468 cells were used to assess the effect of PD-CDDP regimen in vitro. Immunoblotting illustrated cyclin D1/RB/E2F axis signaling pathway.Results: PD induced G1 phase cell cycle arrest in MDA-MB-231 cell line. However, synchronous treatment with PD and CDDP for 24h, PD used for 24h and then followed by CDDP or CDDP used for 24h and then followed by PD all had no influence on cell apoptosis of MDA-MB-231 cells. We further investigated the effect of PD or CDDP withdrawal on sequential treatment and found that PD used for 48h and then withdrawn for 48h followed by CDDP (PD-CDDP) could significantly increase apoptosis, inhibit cell viability and colony formation of MDA-MB-231 cells, while in other regimens PD and CDDP represented additive or antagonistic response. Preferential use of PD could increase DNA damage by CDDP as measured through γH2AX. These findings above were negative in sh-MDA-MB-231 cells and cell function experiments of MDA-MB-468 and RB-overexpression MDA-MB-468 cells could draw similar conclusions, which indicated that PD enhanced the sensitivity of TNBC cells to CDDP in a RB dependent manner. In vivo, this combination treatment inhibited tumor growth and Ki-67 expression compared with single drug treatments in MDA-MB-231 xenograft models. Western blotting analysis presented that PD enhanced sensitivity to CDDP through CDK4/6-cyclin D-RB-E2F pathway. Conclusions: Pre-treatment with PD synchronized tumor cell cycle through CDK4/6-cyclin D1-RB-E2F pathway, which could increase anti-tumor effect of CDDP. PD-CDDP might be an effective treatment for RB-proficient TNBC patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ting Yang ◽  
Yi-Xin Jiang ◽  
Ye Wu ◽  
Dong Lu ◽  
Rui Huang ◽  
...  

Resibufogenin (RBF), an active compound from Bufo bufonis, has been used for the treatment of multiple malignant cancers, including pancreatic cancer, colorectal cancer, and breast cancer. However, whether RBF could exert its antitumor effect by inhibiting angiogenesis remains unknown. Here, we aimed to explore the antiangiogenic activity of RBF and its underlying mechanism on human umbilical vein endothelial cell (HUVEC), and the therapeutic efficacy with regard to antiangiogenesis in vivo using two triple-negative breast cancer (TNBC) models. Our results demonstrated that RBF can inhibit the proliferation, migration, and tube formation of HUVECs in a dose-dependent manner. Spheroid sprouts were thinner and shorter after RBF treatment in vitro 3D spheroid sprouting assay. RBF also significantly suppressed VEGF-mediated vascular network formation in vivo Matrigel plug assay. In addition, Western blot analysis was used to reveal that RBF inhibited the phosphorylation of VEGFR2 and its downstream protein kinases FAK and Src in endothelial cells (ECs). Molecular docking simulations showed that RBF affected the phosphorylation of VEGFR2 by competitively binding to the ATP-bound VEGFR2 kinase domain, thus preventing ATP from providing phosphate groups. Finally, we found that RBF exhibited promising antitumor effect through antiangiogenesis in vivo without obvious toxicity. The present study first revealed the high antiangiogenic activity and the underlying molecular basis of RBF, suggesting that RBF could be a potential antiangiogenic agent for angiogenesis-related diseases.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Haoming Chen ◽  
Ravi Padia ◽  
Tao Li ◽  
Yue Li ◽  
Bin Li ◽  
...  

AbstractTriple negative breast cancer (TNBC) cells are generally more invasive than estrogen receptor-positive (ER + ) breast cancer cells. Consistent with the importance of activator protein 1 (AP1) transcription factors in invasion, AP1 activity is much higher in TNBC lines than ER + lines. In TNBC cells, robust AP1 activity is facilitated by both ERK and p38MAPK signaling pathways. While ERK signaling pathway regulates AP1 activity by controlling the abundance of AP1 transcription factors, p38MAPK signaling pathway does it by enhancing AP1 binding to AP1 sites without altering their abundance. Here, we show that p38MAPK regulation of AP1 activity involves both MAPKAPK2 (MK2) and JAB1, a known JUN-binding protein. MK2 not only interacts with JAB1 but also directly phosphorylates JAB1 at Ser177 in TNBC cells. Interestingly, Ser177 phosphorylation does not affect JAB1 and JUN interaction. Instead, interfering with p38MAPK signaling pathway or introducing an S to A point mutation at Ser177 of JAB1 reduces JUN recruitment to the AP1 sites in cyclin D1, urokinase plasminogen activator (uPA) and uPA receptor promoters. Moreover, knockdown of JAB1 diminishes >60% of AP1 transcriptional activity in TNBC cells. Taken together, these results indicate that MK2-mediated phosphorylation of JAB1 facilitates JUN recruitment to AP1 sites, thus augmenting AP1 activity. In line with the role of JAB1 in AP1 activity, silencing JAB1 leads to dramatic reduction in TNBC cell growth, in vitro invasion and in vivo tumor outgrowth. This study suggests that the p38MAPK-MK2 signaling pathway promotes TNBC tumorigenesis by sustaining robust AP1 activity.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zheng Li ◽  
Yaming Li ◽  
Xiaolong Wang ◽  
Qifeng Yang

Abstract Background Although immune checkpoint blockade has emerged as a novel promising strategy for triple-negative breast cancer (TNBC), many patients fail response or acquire resistance to current agents. Consequently, our focus need to shift toward alternative inhibitory targets, predictor for responsiveness, and immune suppressive mechanisms. Methods In this study, we performed systematic bioinformatics analyses to identify PPP2R2B as a robust tumor suppressor in TNBC. Meanwhile, breast cancer progression cell line model was applied in our research. Quantitative real-time PCR assay (Q-PCR) was carried out to assess the role of PPP2R2B in the onset and progression of breast cancer. Furthermore, we validated the effect of PPP2R2B on immune activity via in vitro experiments based on macrophages. To further decipher the roles of PPP2R2B in TNBC, we investigated the transcriptome level, genomic profiles, and its clinical prognostic value. Results In TNBC tissues, PPP2R2B expression was significantly downregulated compared to normal breast tissues. Kaplan‐Meier survival analysis revealed that patients with low PPP2R2B expression had shorter survival time than those with high PPP2R2B expression. Q-PCR analysis suggested that PPP2R2B downregulation could play a key role in breast-cancer initiation and progression. Additionally, our findings showed that PPP2R2B was positively related with CD8 T cells, CD4 Th1 helper cells, and M1 macrophages, but negatively related with M2 macrophages. Subsequent results identified that PPP2R2B was strongly related with immune inhibitor genes (GZMA, PRF1, and IFNG), which could improve T lymphocytes antitumor function and restrict immune evasion. Meanwhile, T cell receptor signaling pathway and antigen processing and presentation signaling pathway were significantly suppressed in low PPP2R2B expression group. Afterwards, distinct subgroups based on PPP2R2B expression exhibited several unique features in somatic mutations, copy numbers alterations, extent of copy number burden, and promoter methylation level. Conclusion Our results indicated that PPP2R2B could serve as a promising biomarker for TNBC, and help predict immunotherapeutic response and guide personalized strategies in TNBC treatment.


2018 ◽  
Author(s):  
Payal Tiwari ◽  
Ariane Blank ◽  
Chang Cui ◽  
Kelly Q. Schoenfelt ◽  
Guolin Zhou ◽  
...  

SUMMARYObesity is associated with increased incidence and severity of triple-negative breast cancer (TNBC); however, mechanisms underlying this relationship are incompletely understood. Macrophages, which accumulate in adipose tissue and are activated during obesity, are an attractive mechanistic link. Here, we show that, during obesity, murine and human mammary adipose tissue macrophages adopt a pro-inflammatory, metabolically- activated (MMe) macrophage phenotype that promotes TNBC stem-like markers and functions, including increased tumorsphere growthin vitroand tumor-initiating potentialin vivo. We demonstrate that MMe macrophages release cytokines in an NADPH oxidase 2 (NOX2)-dependent manner that signal through glycoprotein 130 (GP130) on TNBC cells to promote their stem-like properties. Accordingly, deletingNox2in myeloid cells or depleting GP130 in TNBC cells attenuates the ability of obesity to drive TNBC tumor formation. Our studies implicate MMe macrophage accumulation in mammary adipose tissue during obesity as a mechanism for promoting TNBC stemness and tumorigenesis.HIGHLIGHTS⁘Obesity promotes TNBC tumor formation and stemness.⁘Mammary adipose tissue macrophages are metabolically activated (MMe) in obese mice and humans.⁘MMe macrophages in mammary adipose tissue contribute to obesity-induced stemness.⁘MMe macrophages promote TNBC stemness through GP130 signaling.


2021 ◽  
Vol 22 (11) ◽  
pp. 5782
Author(s):  
Ashwini Makhale ◽  
Devathri Nanayakkara ◽  
Prahlad Raninga ◽  
Kum Kum Khanna ◽  
Murugan Kalimutho

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer lacking targeted therapy. Here, we evaluated the anti-cancer activity of APR-246, a P53 activator, and CX-5461, a RNA polymerase I inhibitor, in the treatment of TNBC cells. We tested the efficacy of individual and combination therapy of CX-5461 and APR-246 in vitro, using a panel of breast cancer cell lines. Using publicly available breast cancer datasets, we found that components of RNA Pol I are predominately upregulated in basal-like breast cancer, compared to other subtypes, and this upregulation is associated with poor overall and relapse-free survival. Notably, we found that the treatment of breast cancer cells lines with CX-5461 significantly hampered cell proliferation and synergistically enhanced the efficacy of APR-246. The combination treatment significantly induced apoptosis that is associated with cleaved PARP and Caspase 3 along with Annexin V positivity. Likewise, we also found that combination treatment significantly induced DNA damage and replication stress in these cells. Our data provide a novel combination strategy by utilizing APR-246 in combination CX-5461 in killing TNBC cells that can be further developed into more effective therapy in TNBC therapeutic armamentarium.


Sign in / Sign up

Export Citation Format

Share Document