scholarly journals THE IMPACT OF THE OVERHEAD LINE'S POWER SUPPLY SYSTEM SPATIAL DIFFERENTIATION ON THE ENERGY CONSUMPTION OF TROLLEYBUS TRANSPORT: PLANNING AND ECONOMIC ASPECTS

Transport ◽  
2015 ◽  
Vol 32 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Mikołaj Bartłomiejczyk ◽  
Marcin Połom

Nowadays the issue of electric energy saving in public transport is becoming a key area of interest, which is connected both with a growth in environmental awareness of the society and an increase in the prices of fuel and electricity. It can be achieved by reducing of the transmission losses in supply system or by the improving of the usage of the regenerative breaking. The spatial differentiation of the energy supply system of public transport is one of the elements, which has significant impact on the energy consumption. Paper presents the theoretical analysis of the impact of supply system topology on the energy consumption and extensive measurement analysis realized in Gdynia (Poland) trolleybus system.

Transport ◽  
2018 ◽  
Vol 33 (5) ◽  
pp. 1144-1154 ◽  
Author(s):  
Mikołaj Bartłomiejczyk

Nowadays the issue of electric energy saving in public transport is becoming a key area of interest which is connected both with a growth in environmental awareness of the society and an increase in the prices of fuel and electricity. It can be achieved by improving the usage of regenerative breaking. In 2016 the Przedsiębiorstwo Komunikacji Trolejbusowej (PKT, Trolleybus Transport Company) in Gdynia began practical implementation of Smart Grid solutions within its trolleybus network. These activities constitute an element of the project ELIPTIC, realised by PKT within the scientific research fund Horizon 2020. The first stage of implementing intelligent network solutions was completed in 2016, and further activities are planned for the next few years. This paper presents a review of Smart Grid solutions which can be implemented in urban traction supply systems, describes the PKT experience concerning the implementation of Smart Grid solutions in trolleybus network supply system to date.


Author(s):  
Erick Miguel Portugal Hidalgo ◽  
Dennis Wilfredo Roldán Silva ◽  
Gilberto Francisco Martha de Souza

The natural gas industry, as well as other industrial activities, is not free from accidents, which can cause serious consequences to the integrity of people and properties. For this reason, it is necessary to develop studies to determine what are the possible causes of LNG leakage during the loading or unloading operation. This paper aims to determine the reliability of the Cargo control system electric power supply system applying Markov Chain technique. This reliability modeling tool is used because the system consists of several components in passive parallel. Based on the reliability analysis maintenance recommendations are proposed aiming at reducing system failure probability. The method used in this paper is divided in three steps. The first step consists in carrying out a study to identify what are the components that are part of electric power supply system. The second step involves the reliability analysis of the electric energy supply system. Finally some maintenance recommendations are presented aiming at reducing system failure rate. This analysis is used for the analysis of a LNG carrier operating in a Brazilian harbor indicating the most probability failure modes of this system and the most suitable maintenance actions to avoid them.


2020 ◽  
Vol 2 (58) ◽  
pp. 28-32
Author(s):  
A. Gapon ◽  
O. Grib ◽  
S. Kozlov ◽  
O. Yevseienko ◽  
O. Levon

The work is devoted to solving an urgent problem - the development of a computer model of the energy consumption system of the Institute of the ionosphere of the National Academy of Sciences and the Ministry of Education and Science of Ukraine in order to solve the problem of increasing the energy efficiency of the measuring complex. The power supply system of the complex is described, a generalized structural diagram of the loads - powerful consumers of electricity is presented. The graphs characterizing the energy consumption of individual powerful loads are presented, the problem of compensating the reactive power of loads is shown. The adequacy of the developed model is confirmed by the coincidence of the shape and values of the experimentally obtained characteristics on loads with the characteristics of the model. The model adequacy was assessed by the variance of feedback deviations from the system mean. The results obtained confirmed the possibility of using the developed Matlab-model of the energy consumption system of the measuring complex for creating and testing on the model of an energy-efficient power supply system, which will ensure the stable operation of scientific equipment for the implementation of research programs of the NAS of Ukraine.


Author(s):  
V. Stepanenko ◽  
Y. Veremiichuk

The implementation of an integrated energy supply system is an effective way to increase energy efficiency, reduce CO2 emissions and increase the use of renewable energy, as well as provide opportunities for energy production, conversion and storage in interconnected infrastructures for energy system operators and consumers. Also, increasing the level of energy efficiency of the energy supply system is one of the important strategies to slow down the growth of demand and mitigate the negative impact on health, the economy and the environment. The article considers the integrated use of energy, the introduction of energy hubs as part of future energy networks and proposes a schematic diagram of an integrated energy supply system. The article presents the results of modeling and computational experiment of ventilation and air conditioning systems in the integrated power supply system, taking into account the technical and operational characteristics of SES, regulatory and technical documents and building codes. According to the results of the study, it is established that the schedule of SES generation and the schedule of electricity consumption by ventilation and air conditioning systems are similar, which leads to a reduction in operating costs and a reduction in the load on the building's power supply system. The scientific substantiation of the integration of the energy storage system into the energy supply structure has been further developed, which will ensure the reliability of the power supply and the efficiency of the solar power plant.


2016 ◽  
Vol 10 (8) ◽  
pp. 230
Author(s):  
Pouya Ghadimi ◽  
Seyed Smaeil Mousavi ◽  
Wen Li ◽  
Sami Kara ◽  
Bernard Kornfeld

Integrated management of manufacturing plant’s production and on-site energy supply systems has shown potential economic, environmental and resource efficiency advantages for the industry. However, existing approaches are solely based on pure mathematical models with a high degree of abstraction with limited applicability, which becomes impractical for industrial applications. In this paper a simulation methodology for production parameters selection and on-site energy supply management is presented. In this case, state-based models and operational strategies of manufacturing processes and on-site energy supply options are integrated to represent interdependency between production processes, technical building services and on-site energy supply system. As a result, the proposed methodology covers manufacturing system complexity without compromising the required accuracy. This is applied to a batch based manufacturing plant and the impact of particular production parameters on energy demand profile is evaluated. The results indicate the impact of production parameters on energy supply system. In addition, the proposed approach enables manufacturers to evaluate the implications of potential production approaches in order to select appropriate operational strategies for on-site energy supply systems.


Author(s):  
Irina V. Provornaya ◽  

The paper analyzes the development of oil and gas supplies to the world market. The structure of oil and gas imports and exports is revealed. It is shown that taking into account the annual growth of global energy consumption, there is an increase in the supply of carbohydrates. The modern global energy supply system is highly international in nature.


2013 ◽  
Vol 805-806 ◽  
pp. 833-836
Author(s):  
Pu Xie ◽  
Su Ning Zhang ◽  
Man Cao ◽  
Rui Li

Based on traditional complementary power supply system, the actual wind-PV-diesel hybrid energy supply system comprising three energy sources, namely PV, wind and diesel generations based on dc bus is established. Each of the three energy sources is controlled so as to deliver energy at optimum efficiency. Then the designing and computing modeling of distributed sources such as wind turbines, photovoltaic array and battery is proposed. Models of wind turbines, photovoltaic array and characteristics of the battery, respectively established the mathematical model of them, and then the simulation model is respectively built by PSCAD/EMTDC. So a micro-network experiment and simulation platform is established, which can simulate any power of wind and solar power output characteristics.


Author(s):  
Oleg Arsent'ev ◽  
Evgeniy Krylov

the questions of the organization of power supply system with control elements to reduce the impact of peak loads on the operation of electrical equipment and reduce energy costs


2019 ◽  
Vol 28 ◽  
pp. 01035
Author(s):  
Bartłomiej Adamski ◽  
Krzysztof Wrobel

The paper presents the results of studies on the impact of the angular range of phase supply on the parameters of a drive based on a switched reluctance motor. The studies were carried out for a drive with a three-phase motor supplied from a modified power supply system, enabling changes in the phase winding configuration. The paper presents the results obtained on the basis of calculations in a simulation model of the drive in the Matlab/Simulink environment for serial and parallel winding configurations.


Sign in / Sign up

Export Citation Format

Share Document