scholarly journals INFLUENCE OF THE GRANITE SCREENINGS TO THE PROPERTIES OF THE CONCRETE PAVING BLOCKS

2012 ◽  
Vol 4 (3) ◽  
pp. 89-95
Author(s):  
Mindaugas Laurinavičius ◽  
Mindaugas Daukšys ◽  
Albertas Klovas

The research deals with the granite screenings as fine aggregate influence on the technological properties of concrete mixtures and on the physical and mechanical properties and durability of concrete paving. The following several compositions of concrete mixture for the production of environment arrangements are researched: fine aggregate using only 0/2 fraction sand (B1), 10% of 0/2 fraction sand replacing with 0/2 fraction granite screenings (B2) and using only granite screenings (B3). Concrete mixtures were prepared in the laboratory, and concrete paving blocks – in the factory. The technological properties of concrete mixtures and physical and mechanical properties of concrete paving blocks (made from the mentioned concrete mixtures) were determined; the durability of the products in the cycles of frost resistance was forecasted. The research results reveal that due to the properly selected ratio between sand and granite screenings in the fine aggregate, the characteristics of concrete paving blocks are better than using only sand as fine aggregate.

2010 ◽  
Vol 2 (6) ◽  
pp. 43-49 ◽  
Author(s):  
Mindaugas Tumosa ◽  
Mindaugas Daukšys ◽  
Ernestas Ivanauskas

Research deals with granite siftings as fine aggregate possibilities to be used for manufacturing cleaved surface exterior concrete bricks. The article describes the influence of granite siftings on the technological properties of concrete mixture and on the physical mechanical properties of cleaved surface exterior concrete bricks formed using these mixtures and forecasts product durability. The following several compositions of concrete mixture for producing exterior concrete bricks are composed: using only 0/4 fraction sand (B1) as a fine aggregate, using only 0/2 fraction granite siftings (B2), and 50% of 0/4 fraction sand replacing with 0/2 fraction granite siftings (B3) depending on the volume. The products were formed in metal moulds; at a later stage, they were cleaved in half. The technological properties of concrete mixture and the physical mechanical properties of cleaved surface exterior concrete bricks formed using the above introduced mixtures were tested forecasting product durability. The results of the conducted research reveal that due to the properly selected ratio between sand and granite siftings in the fine aggregate, granite siftings may be used for manufacturing cleaved surface exterior concrete bricks.


2021 ◽  
Vol 895 ◽  
pp. 147-156
Author(s):  
Esam Hewayde ◽  
Ziyad Kubba

This paper investigates the effect of using wastes sawdust as a replacement of fine aggregate (sand) on mechanical properties naming compressive, tensile and flexural strengths of ordinary Portland concrete. The wastes sawdust was treated before incorporating it in concrete mixtures. Three different methods were used to pre-treat the sawdust including a) soaking the sawdust in distilled water at 50 oC, b) soaking the sawdust in Ca (OH)2 solution, and c) soaking the sawdust in Ca (OH)2 solution and using a set accelerator in the concrete mixture. In addition to the control mixture (having no sawdust), three more concrete mixtures were prepared to explore the effect of the three different methods of pre-treatment on the mechanical properties of concrete. Results showed that the compressive strength of the concrete incorporating wastes sawdust pre-treated with the calcium hydroxide solution (slaked lime) and having the accelerator was higher than that of the control mixture. The tensile and flexural strengths of the concrete mixture having waste sawdust pre-treated by Ca (OH)2 solution and having the accelerator were found to be very comparable to those of the control mixture. On the other hand, the compressive, tensile, and flexural strengths of the concrete mixture with sawdust pre-treated by Ca (OH)2 solution only were somehow comparable to those of concrete mixture having sawdust pre-treated by distilled water. While the compressive strength of the concrete mixtures incorporating sawdust pre-treated with either Ca (OH)2 solution or distilled water was less than that of the control mixture, both tensile and flexural strengths of the two treated concrete mixtures were approximately comparable to those of the control mixture.


2019 ◽  
Vol 968 ◽  
pp. 96-106
Author(s):  
Oleksandr Pshinko ◽  
Olena Hromova ◽  
Dmytro Rudenko

Study of rheological properties of concrete mixtures based on modified cement systems in order to determine process parameters. Methodology. To study structural-mechanical properties of modified concrete mixtures of different consistency at their horizontal vibrating displacement an oscillatory viscometer was designed. Results. The optimization of the process of vibration displacement of concrete mixtures with the specification of parameters of vibration impacts taking into account structural-mechanical properties of the mixture is performed. It has been established that the viscosity of the modified cement system of the concrete mixture is a variable quantity, which depends on the parameters of the vibration impacts. Scientific novelty. The mechanism of interaction of the modified concrete mixture with the form and the table vibrator during its vibration compaction is determined. On the basis of this, a model of concrete laying process control is proposed, that allows to predict the ability to form a dense concrete structure. Practical significance. Disclosed physical nature of the process of vibrating displacement of modified concrete mixtures using the principles of physical-chemical mechanics of concrete allows reasonably choose the best options for vibration impacts.


2011 ◽  
Vol 418-420 ◽  
pp. 406-410
Author(s):  
Jun Liu ◽  
Yao Li ◽  
Dan Dan Hong ◽  
Yu Liu

Abstract. Recycled aggregate—rural building material wastes pretreated by cement mortar—are applied into concrete with different replacement rates: 0, 25%, 50%, 75%, and 100%. Results from measurements of compressive strength, cleavage tensile strength, mass loss after fast freeze-thaw cycles, and compressive strength loss indicate that a different recycled aggregate replacement rate certainly influences concrete mechanical properties and frost resistance. Recycled aggregate replacement rates less than 75% performs better than common concrete. Data from the 100% replacement rate is worse than that of rates less than 75% but still satisfy the general demands of GB standard on C30 concrete.


2018 ◽  
Vol 212 ◽  
pp. 01013
Author(s):  
Vadim Balabanov ◽  
Victor Baryshok ◽  
Nikita Epishkin

The sharply continental climate of the Irkutsk region is characterized by wide temperature intervals throughout the year. The repeated cyclicity of freezing and thawing of building materials in the water-saturated state influences the change in technical characteristics and the durability of concrete products and structures. The concrete products’ features in such climatic conditions create the need for the production of concretes with improved indicators of physical and mechanical properties. The effect of modifying additives on the technological characteristics of sulfur concrete is established. The effect of all elements of sulfur concrete on its strength and frost resistance. The composition of sulfuric concrete is obtained, which meets all the requirements and also has high strength and increased frost resistance. Formulations with a certain ratio of structural sulfuric concrete mixtures were developed. As a result of the use of technical sulfur in the composition of concrete products, the problem of utilizing annually accumulating reserves of technical sulfur is partially solved. The strength properties of sulfuric concretes easily compete with high-quality brands of concrete, special types of concretes that have in their composition additives.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6692
Author(s):  
Xianhui Zhao ◽  
Haoyu Wang ◽  
Linlin Jiang ◽  
Lingchao Meng ◽  
Boyu Zhou ◽  
...  

The long-term property development of fly ash (FA)-based geopolymer (FA−GEO) incorporating industrial solid waste carbide slag (CS) for up to 360 d is still unclear. The objective of this study was to investigate the fresh, physical, and mechanical properties and microstructures of FA−GEO composites with CS and to evaluate the effects of CS when the composites were cured for 360 d. FA−GEO composites with CS were manufactured using FA (as an aluminosilicate precursor), CS (as a calcium additive), NaOH solution (as an alkali activator), and standard sand (as a fine aggregate). The fresh property and long-term physical properties were measured, including fluidity, bulk density, porosity, and drying shrinkage. The flexural and compressive strengths at 60 d and 360 d were tested. Furthermore, the microstructures and gel products were characterized by scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). The results show that the additional 20.0% CS reduces the fluidity and increases the conductivity of FA−GEO composites. Bulk densities were decreased, porosities were increased, and drying shrinkages were decreased as the CS content was increased from 0.0% to 20.0% at 360 d. Room temperature is a better curing condition to obtain a higher long-term mechanical strength. The addition of 20.0% CS is more beneficial to the improvement of long-term flexural strength and toughness at room temperature. The gel products in CS−FA−GEO with 20.0% CS are mainly determined as the mixtures of sodium aluminosilicate (N−A−S−H) gel and calcium silicate hydration (C−S−H) gel, besides the surficial pan-alkali. The research results provide an experimental basis for the reuse of CS in various scenarios.


2018 ◽  
Vol 760 ◽  
pp. 204-209 ◽  
Author(s):  
Magdaléna Šefflová

This study deals with determination of the properties of the fine recycled aggregate (FRA) concrete with partial replacement of natural sand in concrete mixtures. The FRA was obtained from concrete waste and crushed on fraction 0 – 4 mm by laboratory jaw crusher. The geometrical and physical properties of natural sand and the FRA were tested. The main goal of this study is evaluation of the basic physical and mechanical properties of the concrete with partial natural sand replacement by the FRA such as workability, water absorption capacity, compressive strength and flexural strength. A total four concrete mixtures were prepared. The first concrete mixture was prepared only with natural sand, did not include the FRA. In other concrete mixtures, natural sand was replaced by the FRA in various replacement ratios (40 %, 50 %, and 60 %). All concrete mixtures were designated with the same parameters for clear comparison. The workability of fresh concrete mixtures and physical and mechanical properties of hardened concrete were tested.


2015 ◽  
Vol 754-755 ◽  
pp. 348-353 ◽  
Author(s):  
Norlia Mohamad Ibrahim ◽  
Leong Qi Wen ◽  
Mustaqqim Abdul Rahim ◽  
Khairul Nizar Ismail ◽  
Roshazita Che Amat ◽  
...  

Compressive strength of concrete is the major mechanical properties of concrete that need to be focused on. Poor compressive strength will lead to low susceptibility of concrete structure towards designated actions. Many researches have been conducted to enhance the compressive strength of concrete by incorporating new materials in the concrete mixture. The dependencies towards natural resources can be reduced. Therefore, this paper presents the results of an experimental study concerning the incorporation of artificial lightweight bubbles aggregate (LBA) into cementations mixture in order to produce comparable compressive strength but at a lower densities. Three concrete mixtures containing various percentages of LBA, (10% - 50% of LBA) and one mixture used normal aggregate (NA) were prepared and characterized. The compressive strength of LBA in concrete was identified to be ranged between 39 MPa and 54 MPa. Meanwhile, the densities vary between 2000 kg/m3 to 2300 kg/m3.


Sign in / Sign up

Export Citation Format

Share Document