Study of Rheological Properties of Modified Concrete Mixtures at Vibration

2019 ◽  
Vol 968 ◽  
pp. 96-106
Author(s):  
Oleksandr Pshinko ◽  
Olena Hromova ◽  
Dmytro Rudenko

Study of rheological properties of concrete mixtures based on modified cement systems in order to determine process parameters. Methodology. To study structural-mechanical properties of modified concrete mixtures of different consistency at their horizontal vibrating displacement an oscillatory viscometer was designed. Results. The optimization of the process of vibration displacement of concrete mixtures with the specification of parameters of vibration impacts taking into account structural-mechanical properties of the mixture is performed. It has been established that the viscosity of the modified cement system of the concrete mixture is a variable quantity, which depends on the parameters of the vibration impacts. Scientific novelty. The mechanism of interaction of the modified concrete mixture with the form and the table vibrator during its vibration compaction is determined. On the basis of this, a model of concrete laying process control is proposed, that allows to predict the ability to form a dense concrete structure. Practical significance. Disclosed physical nature of the process of vibrating displacement of modified concrete mixtures using the principles of physical-chemical mechanics of concrete allows reasonably choose the best options for vibration impacts.

2015 ◽  
Vol 754-755 ◽  
pp. 348-353 ◽  
Author(s):  
Norlia Mohamad Ibrahim ◽  
Leong Qi Wen ◽  
Mustaqqim Abdul Rahim ◽  
Khairul Nizar Ismail ◽  
Roshazita Che Amat ◽  
...  

Compressive strength of concrete is the major mechanical properties of concrete that need to be focused on. Poor compressive strength will lead to low susceptibility of concrete structure towards designated actions. Many researches have been conducted to enhance the compressive strength of concrete by incorporating new materials in the concrete mixture. The dependencies towards natural resources can be reduced. Therefore, this paper presents the results of an experimental study concerning the incorporation of artificial lightweight bubbles aggregate (LBA) into cementations mixture in order to produce comparable compressive strength but at a lower densities. Three concrete mixtures containing various percentages of LBA, (10% - 50% of LBA) and one mixture used normal aggregate (NA) were prepared and characterized. The compressive strength of LBA in concrete was identified to be ranged between 39 MPa and 54 MPa. Meanwhile, the densities vary between 2000 kg/m3 to 2300 kg/m3.


2021 ◽  
Vol 895 ◽  
pp. 147-156
Author(s):  
Esam Hewayde ◽  
Ziyad Kubba

This paper investigates the effect of using wastes sawdust as a replacement of fine aggregate (sand) on mechanical properties naming compressive, tensile and flexural strengths of ordinary Portland concrete. The wastes sawdust was treated before incorporating it in concrete mixtures. Three different methods were used to pre-treat the sawdust including a) soaking the sawdust in distilled water at 50 oC, b) soaking the sawdust in Ca (OH)2 solution, and c) soaking the sawdust in Ca (OH)2 solution and using a set accelerator in the concrete mixture. In addition to the control mixture (having no sawdust), three more concrete mixtures were prepared to explore the effect of the three different methods of pre-treatment on the mechanical properties of concrete. Results showed that the compressive strength of the concrete incorporating wastes sawdust pre-treated with the calcium hydroxide solution (slaked lime) and having the accelerator was higher than that of the control mixture. The tensile and flexural strengths of the concrete mixture having waste sawdust pre-treated by Ca (OH)2 solution and having the accelerator were found to be very comparable to those of the control mixture. On the other hand, the compressive, tensile, and flexural strengths of the concrete mixture with sawdust pre-treated by Ca (OH)2 solution only were somehow comparable to those of concrete mixture having sawdust pre-treated by distilled water. While the compressive strength of the concrete mixtures incorporating sawdust pre-treated with either Ca (OH)2 solution or distilled water was less than that of the control mixture, both tensile and flexural strengths of the two treated concrete mixtures were approximately comparable to those of the control mixture.


2012 ◽  
Vol 4 (3) ◽  
pp. 89-95
Author(s):  
Mindaugas Laurinavičius ◽  
Mindaugas Daukšys ◽  
Albertas Klovas

The research deals with the granite screenings as fine aggregate influence on the technological properties of concrete mixtures and on the physical and mechanical properties and durability of concrete paving. The following several compositions of concrete mixture for the production of environment arrangements are researched: fine aggregate using only 0/2 fraction sand (B1), 10% of 0/2 fraction sand replacing with 0/2 fraction granite screenings (B2) and using only granite screenings (B3). Concrete mixtures were prepared in the laboratory, and concrete paving blocks – in the factory. The technological properties of concrete mixtures and physical and mechanical properties of concrete paving blocks (made from the mentioned concrete mixtures) were determined; the durability of the products in the cycles of frost resistance was forecasted. The research results reveal that due to the properly selected ratio between sand and granite screenings in the fine aggregate, the characteristics of concrete paving blocks are better than using only sand as fine aggregate.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1877
Author(s):  
Kai-Hung Yang ◽  
Gabriella Lindberg ◽  
Bram Soliman ◽  
Khoon Lim ◽  
Tim Woodfield ◽  
...  

Recent advances highlight the potential of photopolymerizable allylated gelatin (GelAGE) as a versatile hydrogel with highly tailorable properties. It is, however, unknown how different photoinitiating system affects the stability, gelation kinetics and curing depth of GelAGE. In this study, sol fraction, mass swelling ratio, mechanical properties, rheological properties, and curing depth were evaluated as a function of time with three photo-initiating systems: Irgacure 2959 (Ig2959; 320–500 nm), lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP; 320–500 nm), and ruthenium/sodium persulfate (Ru/SPS; 400–500 nm). Results demonstrated that GelAGE precursory solutions mixed with either Ig2959 or LAP remained stable over time while the Ru/SPS system enabled the onset of controllable redox polymerization without irradiation during pre-incubation. Photo-polymerization using the Ru/SPS system was significantly faster (<5 s) compared to both Ig2959 (70 s) and LAP (50 s). Plus, The Ru/SPS system was capable of polymerizing a thick construct (8.88 ± 0.94 mm), while Ig2959 (1.62 ± 0.49 mm) initiated hydrogels displayed poor penetration depth with LAP (7.38 ± 2.13 mm) in between. These results thus support the use of the visible light based Ru/SPS photo-initiator for constructs requiring rapid gelation and a good curing depth while Ig2959 or LAP can be applied for photo-polymerization of GelAGE materials requiring long-term incubation prior to application if UV is not a concern.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1661
Author(s):  
Katarzyna Adamiak ◽  
Katarzyna Lewandowska ◽  
Alina Sionkowska

Collagen films are widely used as adhesives in medicine and cosmetology. However, its properties require modification. In this work, the influence of salicin on the properties of collagen solution and films was studied. Collagen was extracted from silver carp skin. The rheological properties of collagen solutions with and without salicin were characterized by steady shear tests. Thin collagen films were prepared by solvent evaporation. The structure of films was researched using infrared spectroscopy. The surface properties of films were investigated using Atomic Force Microscopy (AFM). Mechanical properties were measured as well. It was found that the addition of salicin modified the roughness of collagen films and their mechanical and rheological properties. The above-mentioned parameters are very important in potential applications of collagen films containing salicin.


2010 ◽  
Vol 2 (6) ◽  
pp. 43-49 ◽  
Author(s):  
Mindaugas Tumosa ◽  
Mindaugas Daukšys ◽  
Ernestas Ivanauskas

Research deals with granite siftings as fine aggregate possibilities to be used for manufacturing cleaved surface exterior concrete bricks. The article describes the influence of granite siftings on the technological properties of concrete mixture and on the physical mechanical properties of cleaved surface exterior concrete bricks formed using these mixtures and forecasts product durability. The following several compositions of concrete mixture for producing exterior concrete bricks are composed: using only 0/4 fraction sand (B1) as a fine aggregate, using only 0/2 fraction granite siftings (B2), and 50% of 0/4 fraction sand replacing with 0/2 fraction granite siftings (B3) depending on the volume. The products were formed in metal moulds; at a later stage, they were cleaved in half. The technological properties of concrete mixture and the physical mechanical properties of cleaved surface exterior concrete bricks formed using the above introduced mixtures were tested forecasting product durability. The results of the conducted research reveal that due to the properly selected ratio between sand and granite siftings in the fine aggregate, granite siftings may be used for manufacturing cleaved surface exterior concrete bricks.


2000 ◽  
Vol 6 (1) ◽  
pp. 39-45
Author(s):  
Donatas Čygas

The article describes the main problems of manufacturing asphalt concrete mixtures at the factories under Ministry of Communication in the Republic of Lithuania. The Lithuanian Road Network is up to 21.122 km of state roads. 1.455 km of them are motorways, 3.415 km—national roads and 16.251 km—regional roads. Half of the state roads in Lithuania are paved with asphalt concrete. 98% of the motorways and 36% of the regional roads have asphalt pavement. Asphalt concrete pavement resistance to corrosion can be increased by improving asphalt concrete mixture production technology: ie by updating technological equipment, changing technological conditions and developing new methods of asphalt concrete mixture production. Therefore, the updating of asphalt concrete mixture production technologies is a very important factor for improving road operating properties and ensuring proper duration of asphalt concrete pavements. Here is the essence of the new separate successive technology: crushed stone and sand are mixed with bitumen in the main asphalt concrete mixer, the amount of bitumen being calculated according to the bitumen absorption in the materials. Then the asphalt cement material produced in a separate high-speed mixer is passed, and the whole mixture is remixed in the main mixer and supplied to the customer. Both separate consequent technologies differ from each other in the order of supplying asphalt cement material into the main mixing unit. Separate successive technology was theoretically grounded by the correlation between the technological thickness of bituminous film and the chemical-mineralogical composition and size of constituents, by the correlation between the particle size and their capability to compose aggregates, by the emergence of the oriented binding material coating on the technological bituminous film encoating mineral particles. Special attention is given to the manufacturing of asphalt cement material in a separate high-speed mixer (3 Table). It was theoretically grounded that mineral filler passing through the intensive shift zone between the paddle ends of the high-speed mixer and the walls of mixing chamber disintegrate and new active surfaces become visible. The molecular structure changes and free radicals appear. This intensive mixing guarantees high bitumen adsorption on the surface of mineral filler, which increases asphalt concrete resistance to corrosion and its durability, improves ecological environment in the asphalt concrete plant. In order to confirm the reliability of research results and explain correlative and regressive regularity, statistical data were processed applying statistical data processing programming system “STATGRAPHICS”. The linear regressive analysis for determining close relations of separate asphalt concrete quality indicators with speed gradient of asphalt cement material shift in a high-speed mixer was performed. Therefore, the possibility to change shift speed gradient from 3000 to 5000 1/s is provided in terms of reference for manufacturing asphalt concrete mixing plant. Correlation between separate asphalt concrete quality indicators and asphalt cement material shift speed gradient as well as bitumen amount in the asphalt cement material was determined by multi-dimensional regressive analysis of experimental data. The calculated correlation factor squared (R2) and F criteria indicate the adequacy and reliability of the multidimensional regression model.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247599
Author(s):  
Yingjun Jiang ◽  
Jiangtao Fan ◽  
Yong Yi ◽  
Tian Tian ◽  
Kejia Yuan ◽  
...  

The vertical vibration compaction method (VVCM), heavy compaction method and static pressure method were used to form phyllite specimens with different degrees of weathering. The influence of cement content, compactness, and compaction method on the mechanical properties of phyllite was studied. The mechanical properties of phyllite was evaluated in terms of unconfined compressive strength (Rc) and modulus of resilience (Ec). Further, test roads were paved along an expressway in China to demonstrate the feasibility of the highly weathered phyllite improvement technology. Results show that unweathered phyllite can be used as subgrade filler. In spite of increasing compactness, phyllite with a higher degree of weathering cannot meet the requirements for subgrade filler. With increasing cement content, Rc and Ec of the improved phyllite increases linearly. Rc and Ec increase by at least 15% and 17%, respectively, for every 1% increase in cement content and by at least 10% and 6%, respectively, for every 1% increase in compactness. The higher the degree of weathering of phyllite, the greater the degree of improvement of its mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document