scholarly journals THE INFLUENCE OF SCHEDULES OF OPEN OFFICE OCCUPANTS’ PRESENCE ON BUILDING’S ENERGY DEMAND

Author(s):  
Jonas Bielskus ◽  
Violeta Motuzienė

Many studies show, that there is a difference between actual and design energy consumption in energy efficient and sustainable buildings. As a rule, buildings consume more energy than it has been foreseen at the design stage. Occupants’ behaviour in buildings is also identified as one of the main reasons causing the so called Performance Gap. Having mobile workstations, opened plan offices are becoming more popular in design solutions in sustainable buildings. Here we have studied one of such office spaces. Monitoring of real occupancy was performed and real occupation schedules were statistically generated. The schedules were compared to the ones given by European Standard for energy performance calculation as well as with default schedules proposed by simulation software DesignBuilder. The comparison shows a significantly lower measured occupancy compared to the above-mentioned schedules. To compare the influence of occupancy related assumptions on predicted energy demand, DesignBuilder model was created and simulated for 3 different occupancy schedules. The results have shown that primary energy demand of a building due to assumptions related with an occupancy, compared to default DesignBuilder schedules are: 111 kWh/m² (32%) higher than the standard case and 152 kWh/m² (44%) than the actual one.

2014 ◽  
Vol 935 ◽  
pp. 48-51
Author(s):  
Xin Zhi Gong ◽  
Yasunori Akashi ◽  
Daisuke Sumiyoshi

Primary energy reduction and energy efficiency improvement are important targets to be achieved in every society and in residential buildings in particular. An energy-efficient and low-emissions solid oxide fuel cell (SOFC) cogeneration system is a promising electric and thermal energy generation technology for implementation in future residential buildings. This paper aims to analyze the energy performance in terms of primary energy demand and its reduction rate when SOFC cogeneration system is used in residential buildings. This study outlines SOFC cogeneration system and its simulation method, and then develops a standard family model for simulation under cold weather condition in China and selected Beijing city as an example, and finally compares them with traditional power and heat generation system based on gas and electricity. The results show that SOFC cogeneration system is an energy-efficient alternative power and thermal energy cogeneration technology for cold climatic cities such as Beijing, and can offer a large reduction rate (about 15.8% in winter) of primary energy demand in residential buildings. This study also finds that the significant reductions in primary energy demand of SOFC system result for the periods with air temperature decreasing.


2021 ◽  
Vol 65 (2-4) ◽  
pp. 345-352
Author(s):  
Giovanni Ciampi ◽  
Yorgos Spanodimitriou ◽  
Niloufar Mokhtari ◽  
Michelangelo Scorpio ◽  
Antonio Rosato ◽  
...  

In this paper, the energy and environmental impacts of a passive retrofit action, involving the installation, on an office building, of a second-skin system with the external layer made of a PVC-coated polyester fabric, were evaluated in terms of primary energy saving and carbon dioxide equivalent emissions. The primary energy consumption and the carbon dioxide equivalent emissions associated with the considered case studies were evaluated through the dynamic simulation software TRNSYS, across a whole year. The study was carried out considering five cities (Athens, Barcelona, Lisbon, Marseille and Naples) in five different countries in southern Europe upon varying the orientation of the two main façades of building (north-south and east-west orientation were considered). The office building was modeled in detail considering different construction characteristics upon varying the country. The simulation results highlight that the best results in terms of PES (equal to 22.4%) in Naples, while the best results in terms of CO2 (equal to 32.0 MgCO2,eq) were obtained when the building is located in Athens. In addition, the adoption of the proposed passive lightweight retrofit solution allowed the reduction of both cooling and thermal yearly energy demand up to 57.7% (Marseille) and 17.8% (Barcelona), respectively.


Author(s):  
Michael Keltsch ◽  
Werner Lang ◽  
Thomas Auer

The Energy Performance of Buildings Directive 2010 calls for the Nearly Zero Energy Standard for new buildings from 2021 onwards: Buildings using “almost no energy” are powered by renewable sources or energy produced by the building itself. For residential buildings, this ambitious new standard has already been reached. But for other building types this goal is still far away. The potential of these buildings to meet a Nearly Zero Energy Standard was investigated by analyzing ten case studies representing non-residential buildings with different uses. The analysis shows that the primary characteristics common to critical building types are a dense building context with a very high degree of technical installation (such as hospital, research and laboratory buildings). The large primary energy demand of these types of buildings cannot be compensated by building and property-related energy generation including off-site renewables. If the future Nearly Zero Energy Standard were to be defined with lower requirements because of this, the state related properties of Bavaria suggest that the real potential energy savings available in at least 85% of all new buildings would be insufficiently exploited. Therefore, it would be useful to instead individualize the legal energy verification process for new buildings to distinguish critical building types such as laboratories and hospitals.


Author(s):  
Michael Keltsch ◽  
Werner Lang ◽  
Thomas Auer

The Energy Performance of Buildings Directive 2010 calls for the Nearly Zero Energy Standard for new buildings from 2021 onwards: Buildings using “almost no energy” are powered by renewable sources or energy produced by the building itself. For residential buildings, this ambitious new standard has already been reached. But for other building types this goal is still far away. The potential of these buildings to meet a Nearly Zero Energy Standard was investigated by analyzing ten case studies representing non-residential buildings with different uses. The analysis shows that the primary characteristics common to critical building types are a dense building context with a very high degree of technical installation (such as hospital, research and laboratory buildings). The large primary energy demand of these types of buildings cannot be compensated by building and property-related energy generation including off-site renewables. If the future Nearly Zero Energy Standard were to be defined with lower requirements because of this, the state related properties of Bavaria suggest that the real potential energy savings available in at least 85% of all new buildings would be insufficiently exploited. Therefore, it would be useful to instead individualize the legal energy verification process for new buildings to distinguish critical building types such as laboratories and hospitals.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1273 ◽  
Author(s):  
Antonio Attanasio ◽  
Marco Piscitelli ◽  
Silvia Chiusano ◽  
Alfonso Capozzoli ◽  
Tania Cerquitelli

Energy performance certification is an important tool for the assessment and improvement of energy efficiency in buildings. In this context, estimating building energy demand also in a quick and reliable way, for different combinations of building features, is a key issue for architects and engineers who wish, for example, to benchmark the performance of a stock of buildings or optimise a refurbishment strategy. This paper proposes a methodology for (i) the automatic estimation of the building Primary Energy Demand for space heating ( P E D h ) and (ii) the characterization of the relationship between the P E D h value and the main building features reported by Energy Performance Certificates (EPCs). The proposed methodology relies on a two-layer approach and was developed on a database of almost 90,000 EPCs of flats in the Piedmont region of Italy. First, the classification layer estimates the segment of energy demand for a flat. Then, the regression layer estimates the P E D h value for the same flat. A different regression model is built for each segment of energy demand. Four different machine learning algorithms (Decision Tree, Support Vector Machine, Random Forest, Artificial Neural Network) are used and compared in both layers. Compared to the current state-of-the-art, this paper brings a contribution in the use of data mining techniques for the asset rating of building performance, introducing a novel approach based on the use of independent data-driven models. Such configuration makes the methodology flexible and adaptable to different EPCs datasets. Experimental results demonstrate that the proposed methodology can estimate the energy demand with reasonable errors, using a small set of building features. Moreover, the use of Decision Tree algorithm enables a concise interpretation of the quantitative rules used for the estimation of the energy demand. The methodology can be useful during both designing and refurbishment of buildings, to quickly estimate the expected building energy demand and set credible targets for improving performance.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2555
Author(s):  
Joanna Rucińska ◽  
Adrian Trząski

This paper deals with the impact of the use of daylight on the overall energy demand for heating, cooling, and lighting in educational buildings. The energy performance of buildings is currently of the utmost importance as current European regulations, starting from 31st December 2020 impose that all new buildings must meet nearly zero-energy building requirements. This paper presents a study of the illuminance distribution in an educational room obtained from measurements and simulation results using two different models. One of the models, integrated with a thermal simulation software, was used to estimate the impact of daylight on the energy demand. The analysis included the use of various window types, lighting control system, reference point location, and daylight calculation model for a sample room in an educational building. Results of the analysis indicate that, due to the high share of lighting demand (reaching up to 78% of the primary energy balance), there is a need to take into account the efficiency of lighting systems during the design process to correctly determine the actual energy balance of a building, increase the quality of the design of lighting systems, as well as to select the optimal parameters of windows.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012233
Author(s):  
Manuela Walsdorf-Maul ◽  
Laura Dommack ◽  
Michael Schneider

Abstract In this study, a life cycle oriented planning of buildings is proposed to support future building developers and planners in making environmentally sound decisions on the basis of comprehensive information. The study, in which the building certification BNB (Bewertungssystem Nachhaltiges Bauen, or “Assessment System for Sustainable Building”) is carried out on the example of an office building, is applicable to German-speaking countries. In addition to meeting the requirements of the 2020 German Energy Act for Buildings (GebäudeEnergieGesetz, GEG), the aim is to optimize the building with regard to sustainability criteria of the BNB by revising and expanding the existing planning so that the “gold” quality label can eventually be achieved. The biggest influence on this optimization process is, among other things, the life cycle costs, the adaptability of the building, the primary energy demand as well as the technical quality. Based on these findings, this research paper details the further development of the energy performance certificate, before in a final step the building assessment can be graphically presented with regard to both aspects – energy efficiency (final energy) and sustainability (in terms of ecological, economic, socio-cultural, functional and technical quality, process quality and location characteristics) – from the production phase through the usage phase up to the disposal phase.


2015 ◽  
Vol 7 (4) ◽  
pp. 499-504
Author(s):  
Violeta Motuzienė ◽  
Kęstutis Valančius

To make reasonable solutions concerning integration of PV into the façade, complex assessment must be performed at the design stage of the building, taking into account all benefits and losses. The paper presents multi-criteria analysis of semi-transparent BIPV. It is based on 4 criteria: energy, ecology, economy, comfort – 3e+c. Results show that because of twice lower solar heat gains, PV window enables to save almost half of cooling energy, it also significantly improves thermal comfort. Total primary energy demand of the office after application of PV drops from 171 kWh/m2 to 96 kWh/m2. Multi-criteria analysis shows that office with BIPV is more sustainable than the one with transparent window. Kad būtų priimti pagrįsti sprendimai, susiję su saulės fotoelementų integravimu į pastato fasadą, projektuojant pastatą reikia atlikti kompleksinį naudos ir nuostolių vertinimą. Straipsnyje pateikiama daugiakriterė į pastatą integruotų saulės fotoelementų analizė, pagrįsta 4 darnumo kriterijais: energiniu, ekonominiu, ekologiniu ir komforto – 3e+c. Rezultatai rodo, kad dėl perpus mažesnių saulės pritėkių esant langui su integruotais fotoelementais, beveik perpus sumažėja energijos poreikiai vėsinant patalpas bei žymiai pagerėja šiluminis komfortas. Bendras administracinės patalpos pirminės energijos poreikis integravus saulės elementus sumažėja nuo 171 kWh/m2 iki 96 kWh/m2. Daugiakriterė analizė rodo, kad sprendimas naudoti langą su integruotais fotoelementais yra darnesnis nei sprendimas naudoti skaidrų langą.


Energy Policy ◽  
2012 ◽  
Vol 42 ◽  
pp. 329-340 ◽  
Author(s):  
Shiwei Yu ◽  
Yi-Ming Wei ◽  
Ke Wang

Sign in / Sign up

Export Citation Format

Share Document