scholarly journals Not All Stars Are the Sun: Empirical Calibration of the Mixing Length for Metal-poor Stars Using One-dimensional Stellar Evolution Models

2018 ◽  
Vol 856 (1) ◽  
pp. 10 ◽  
Author(s):  
M. Joyce ◽  
B. Chaboyer
1995 ◽  
Vol 10 ◽  
pp. 433-434
Author(s):  
S. Sofia

This Joint Discussion (Number 13), took place on August 22, 1994 at The Hague, in connection with the XXII General Assembly of the IAU. At the one-day long meeting, there were presentations by 15 invited speakers and 15 posters.The Joint Discussions had been organized in response to the considerable progress made in this field of research during the previous decade. Although it had long been known that the prevailing mixing length theory (MLT), used extensively and very successfully in Astrophysics for several decades had become needlessly limited, until recently it was impractical to contemplate more realistic approaches. The situation has changed recently as a consequence of advances in numerical techniques and computational capabilities, and thus JD 13 was organized to discuss the advances, and perhaps to understand the strengths and weaknesses of each approach.There were two presentations which addressed the main issues in convection theory (E. Schatzman), and the astrophysical implications (P. Demarque). Several talks covered current numerical codes, which included deep convection in a rotating reference frame (K. Chan), convection in the presence of magnetic fields (P. Fox), and shallower solar convection simulations on a wide range of spatial scales (A. Nordlund). Although these approaches have enriched (and are continuing to enrich) our understanding of the physics of convective fluids, they are much too detailed (both in space and in time) to be integrated in the study of stellar evolution. To overcome this shortcoming, S. Sofia described a technique developed together with Lydon and Fox to use relationships between dynamical and thermodynamic properties of convective flows derived in numerical models to be applied in stellar structure and evolution codes by performing small modifications of the standard MLT formalism. The advantage of this technique is that it does not contain a mixing length or any other arbitrary parameter, and it was used successfully in modeling the evolution of the Sun and other solar analogues. V. Canuto also presented a formulation of convection both amenable to be used in stellar evolution studies, and not requiring an arbitrary mixing length-like parameter. His formulation uses the Reynolds stress method, which has the advantage of modeling the full eddy spectrum of the turbulence, rather than the narrow wave number range for energy containing eddies assumed in the MLT. Additionally, this technique can address the problems of non-locality and overshoot. M. Stix also addressed non-locality and overshoot by presenting results of a non-local mixing length model of the Sun derived from the Shaviv and Salpeter model.


1997 ◽  
Vol 478 (2) ◽  
pp. 778-786 ◽  
Author(s):  
Jeremy R. King ◽  
Constantine P. Deliyannis ◽  
Ann Merchant Boesgaard
Keyword(s):  

2006 ◽  
Vol 2 (S239) ◽  
pp. 314-316 ◽  
Author(s):  
Achim Weiss ◽  
Martin Flaskamp

AbstractThe non-local, time-dependent convection theory of Kuhfuß (1986) in both its one- and three-equation form has been implemented in the Garching stellar evolution code. We present details of the implementation and the difficulties encountered. Specific test cases have been calculated, among them a 5 M⊙ star and the Sun. These cases point out deficits of the theory. In particular, the assumption of an isotropic velocity field leads to too extensive overshooting and has to be modified at convective boundaries. Some encouraging aspects are indicated as well.


1950 ◽  
Vol 1 (08) ◽  
pp. 453-455 ◽  
Author(s):  
F. Hoyle ◽  
R. A. Lyttleton

Abstract Most astronomical hypotheses on the causes of ice ages are dynamically untenable. Alterations in the amount of solar radiation, however, have long been recognized as a possible cause, but only with recent progress in the theory of stellar evolution has it become clear that such changes must occur. At irregular intervals the sun will pass, and will have passed, with low relative speeds through interstellar hydrogen clouds, and the gravitational action of the sun leads to an increase in the quantity of material falling to the surface with high velocity. The conversion of the kinetic energy of fall of this material results in an increase of emission at the solar surface. Increases of order up to about 10 per cent of the present total radiation could occur, and the process is such that the extra energy would be located mainly in the shorter wavelengths.


2003 ◽  
Vol 210 ◽  
pp. 273-286 ◽  
Author(s):  
Martin Asplund

I describe recent progress in terms of 3D hydrodynamical model atmospheres and 3D line formation and their applications to stellar abundance analyses of late-type stars. Such 3D studies remove the free parameters inherent in classical 1D investigations (mixing length parameters, macro- and microturbulence) yet are highly successful in reproducing a large arsenal of observational constraints such as detailed line shapes and asymmetries. Their potential for abundance analyses is illustrated by discussing the derived oxygen abundances in the Sun and in metal-poor stars, where they seem to resolve long-standing problems as well as significantly alter the inferred conclusions.


2020 ◽  
Vol 494 (2) ◽  
pp. 2236-2243 ◽  
Author(s):  
Tyrone E Woods ◽  
Alexander Heger ◽  
Lionel Haemmerlé

ABSTRACT Supermassive stars have been proposed as the progenitors of the massive ($\sim \!10^{9}\, \mathrm{M}_{\odot }$) quasars observed at z ∼ 7. Prospects for directly detecting supermassive stars with next-generation facilities depend critically on their intrinsic lifetimes, as well as their formation rates. We use the one-dimensional stellar evolution code kepler to explore the theoretical limiting case of zero-metallicity non-rotating stars, formed monolithically with initial masses between $10$ and $190\, \mathrm{kM}_{\odot }$. We find that stars born with masses between $\sim\! 60$ and $\sim\! 150\, \mathrm{kM}_{\odot }$ collapse at the end of the main sequence, burning stably for $\sim\! 1.5\, \mathrm{Myr}$. More massive stars collapse directly through the general relativistic instability after only a thermal time-scale of $\sim\! 3$–$4\, \mathrm{kyr}$. The expected difficulty in producing such massive thermally relaxed objects, together with recent results for currently preferred rapidly accreting formation models, suggests that such ‘truly direct’ or ‘dark’ collapses may not be typical for supermassive objects in the early Universe. We close by discussing the evolution of supermassive stars in the broader context of massive primordial stellar evolution and the possibility of supermassive stellar explosions.


1990 ◽  
Vol 142 ◽  
pp. 513-514
Author(s):  
Ch. V. Sastry

We observed the continuum emission from the radio sun when there is no burst activity at λ = 8.7 m with the large decameter wave radio telescope at Gauribidanur (Latitude 13° 36‘ 12“ N and 77° 27‘ 07“ E) with a resolution of 26'/40'. A compound grating interferometer with one dimensional resolution of 3' is also used. These observations are made during August 1983 and June 1986. The brightness temperature at the center of the sun varied from 0.2 106 K to 0.8 106 K during these periods on time scales of several hours to a day. Since the sun is absolutely quiet during these periods we believe that the radiation is purely thermal in nature. In this case the observed brightness temperature variations imply large scale density variations by more than a factor of three if the corona is optically thin at these wavelengths. Alternatively if the corona is optically thick the observations imply real electron temperature variations with or without accompanying density variations.


1989 ◽  
Vol 8 (2) ◽  
pp. 142-144 ◽  
Author(s):  
A. D. Gray ◽  
D. Campbell-Wilson ◽  
M. I. Large

AbstractThe Molonglo Observatory Synthesis Telescope (MOST) has been used to observe the Sun with total-power fan-beams having a one-dimensional resolution of 41 arcsec at 843 MHz. The scans reveal clearly the rotation and evolution of the slowly-varying component as well as some burst activity. Low radio brightness features have also been identified, but the exact relationship between these features and coronal holes is, as yet, unclear. Several partial synthesis observations have been used to generate two-dimensional radioheliograms.


1996 ◽  
Vol 14 (4) ◽  
pp. 375-382 ◽  
Author(s):  
C.-C. Wu ◽  
S. T. Wu ◽  
M. Dryer

Abstract. It is well known that most MHD shocks observed within 1 AU are MHD fast shocks. Only a very limited number of MHD slow shocks are observed within 1 AU. In order to understand why there are only a few MHD slow shocks observed within 1 AU, we use a one-dimensional, time-dependent MHD code with an adaptive grid to study the generation and evolution of interplanetary slow shocks (ISS) in the solar wind. Results show that a negative, nearly square-wave perturbation will generate a pair of slow shocks (a forward and a reverse slow shock). In addition, the forward and the reverse slow shocks can pass through each other without destroying their characteristics, but the propagating speeds for both shocks are decreased. A positive, square-wave perturbation will generate both slow and fast shocks. When a forward slow shock (FSS) propagates behind a forward fast shock (FFS), the former experiences a decreasing Mach number. In addition, the FSS always disappears within a distance of 150R⊙ (where R⊙ is one solar radius) from the Sun when there is a forward fast shock (with Mach number ≥1.7) propagating in front of the FSS. In all tests that we have performed, we have not discovered that the FSS (or reverse slow shock) evolves into a FFS (or reverse fast shock). Thus, we do not confirm the FSS-FFS evolution as suggested by Whang (1987).


Sign in / Sign up

Export Citation Format

Share Document