scholarly journals A Multi-wavelength Analysis of Small-scale Brightenings Observed by IRIS

2021 ◽  
Vol 922 (2) ◽  
pp. 226
Author(s):  
Llŷr Dafydd Humphries ◽  
Huw Morgan

Abstract Small-scale brightenings in solar atmospheric observations are a manifestation of heating and/or energy transport events. We present statistical characteristics of brightenings from a new detection method applied to 1330, 1400, and 2796 Å IRIS slit-jaw image time series. A total of 2377 events were recorded that coexist in all three channels, giving high confidence that they are real. Of these, ≈1800 were spatially coherent, equating to event densities of ∼9.7 × 10−5 arcsec−2 s−1 within a 90″ × 100″ FOV over 34.5 minutes. Power-law indices estimates are determined for total brightness (2.78 < α < 3.71), maximum brightness (3.84 < α < 4.70), and average area (4.31 < α < 5.70) distributions. Duration and speed distributions do not obey a power law. A correlation is found between the events’ spatial fragmentation, area, and duration, and a weak relationship with total brightness, showing that larger/longer-lasting events are more likely to fragment during their lifetime. Speed distributions show that all events are in motion, with an average speed of ∼7 km s−1. The events’ spatial trajectories suggest that cooler 2796 Å events tend to appear slightly later and occupy a different position/trajectory than the hotter channel results. This suggests that either many of these are impulsive events caused by reconnection, with subsequent rapid cooling, or that the triggering event occurs near the TR, with a subsequent propagating disturbance to cooler atmospheric layers. The spatial distribution of events is not uniform, with broad regions devoid of events. A comparison of spatial distribution with properties of other atmospheric layers shows a tentative connection between high magnetic field strength, the corona’s multi-thermality, and high IRIS brightening activity.

2020 ◽  
Vol 64 (8) ◽  
pp. 693-710
Author(s):  
V. A. Sokolova ◽  
A. I. Vasyunin ◽  
A. B. Ostrovskii ◽  
S. Yu. Parfenov

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3626
Author(s):  
Fang Li ◽  
Wei Chen ◽  
Yishui Shui

The vehicle-to-vehicle (V2V) radio channel is non-stationary due to the rapid movement of vehicles. However, the stationarity of the V2V channels is an important indicator of the V2V channel characteristics. Therefore, we analyzed the non-stationarity of V2V radio channels using the local region of stationarity (LRS). We selected seven scenarios, including three directions of travel, i.e., in the same, vertical, and opposite directions, and different speeds and environments in a similar driving direction. The power delay profile (PDP) and LRS were estimated from the measured channel impulse responses. The results show that the most important influences on the stationary times are the direction and the speed of the vehicles. The average stationary times for driving in the same direction range from 0.3207 to 1.9419 s, the average stationary times for driving in the vertical direction are 0.0359–0.1348 s, and those for driving in the opposite direction are 0.0041–0.0103 s. These results are meaningful for the analysis of the statistical characteristics of the V2V channel, such as the delay spread and Doppler spread. Small-scale fading based on the stationary times affects the quality of signals transmitted in the V2V channel, including the information transmission rate and the information error code rate.


2021 ◽  
Vol 10 (3) ◽  
pp. 157
Author(s):  
Paul-Mark DiFrancesco ◽  
David A. Bonneau ◽  
D. Jean Hutchinson

Key to the quantification of rockfall hazard is an understanding of its magnitude-frequency behaviour. Remote sensing has allowed for the accurate observation of rockfall activity, with methods being developed for digitally assembling the monitored occurrences into a rockfall database. A prevalent challenge is the quantification of rockfall volume, whilst fully considering the 3D information stored in each of the extracted rockfall point clouds. Surface reconstruction is utilized to construct a 3D digital surface representation, allowing for an estimation of the volume of space that a point cloud occupies. Given various point cloud imperfections, it is difficult for methods to generate digital surface representations of rockfall with detailed geometry and correct topology. In this study, we tested four different computational geometry-based surface reconstruction methods on a database comprised of 3668 rockfalls. The database was derived from a 5-year LiDAR monitoring campaign of an active rock slope in interior British Columbia, Canada. Each method resulted in a different magnitude-frequency distribution of rockfall. The implications of 3D volume estimation were demonstrated utilizing surface mesh visualization, cumulative magnitude-frequency plots, power-law fitting, and projected annual frequencies of rockfall occurrence. The 3D volume estimation methods caused a notable shift in the magnitude-frequency relations, while the power-law scaling parameters remained relatively similar. We determined that the optimal 3D volume calculation approach is a hybrid methodology comprised of the Power Crust reconstruction and the Alpha Solid reconstruction. The Alpha Solid approach is to be used on small-scale point clouds, characterized with high curvatures relative to their sampling density, which challenge the Power Crust sampling assumptions.


MethodsX ◽  
2021 ◽  
Vol 8 ◽  
pp. 101257
Author(s):  
Dino Gibertoni ◽  
Francesco Sanmarchi ◽  
Kadjo Yves Cedric Adja ◽  
Davide Golinelli ◽  
Chiara Reno ◽  
...  

2012 ◽  
Vol 10 (H16) ◽  
pp. 86-89 ◽  
Author(s):  
J. Todd Hoeksema

AbstractThe almost stately evolution of the global heliospheric magnetic field pattern during most of the solar cycle belies the intense dynamic interplay of photospheric and coronal flux concentrations on scales both large and small. The statistical characteristics of emerging bipoles and active regions lead to development of systematic magnetic patterns. Diffusion and flows impel features to interact constructively and destructively, and on longer time scales they may help drive the creation of new flux. Peculiar properties of the components in each solar cycle determine the specific details and provide additional clues about their sources. The interactions of complex developing features with the existing global magnetic environment drive impulsive events on all scales. Predominantly new-polarity surges originating in active regions at low latitudes can reach the poles in a year or two. Coronal holes and polar caps composed of short-lived, small-scale magnetic elements can persist for months and years. Advanced models coupled with comprehensive measurements of the visible solar surface, as well as the interior, corona, and heliosphere promise to revolutionize our understanding of the hierarchy we call the solar magnetic field.


2018 ◽  
Vol 41 (5) ◽  
pp. 1290-1300
Author(s):  
Jieliang Shen ◽  
Yan Su ◽  
Qing Liang ◽  
Xinhua Zhu

An inertial navigation system (INS) aided with an aircraft dynamic model (ADM) is developed as a novel airborne integrated navigation system, coping with the absence of a global navigation satellite system. To overcome the shortcomings of the conventional linear integration of INS/ADM based on an extended Kalman filter, a nonlinear integration method is proposed. Fast-update ADM makes it possible to utilize a direct filtering method, which employs nonlinear INS mechanics as system equations and a nonlinear ADM as observation equations, substituting the indirect filtering based on linear error equations. The strong nonlinearity generally calls for an unscented Kalman filter to accomplish the fusion process. Dealing with the model uncertainty, the inaccurate statistical characteristics of the noise and the potential nonpositive definiteness of the covariance matrix, an improved square-root unscented H∞ filter (ISRUHF) is derived in the paper, in which the robust factor [Formula: see text] is further expanded into a diagonal matrix [Formula: see text], to improve the accuracy and robustness of the integrated navigation system. Corresponding simulations as well as real flight tests based on a small-scale fixed-wing aircraft are operated and ISRUHF shows superiority compared with the commonly used fusion algorithm.


2021 ◽  
Author(s):  
Isam M. Arafa ◽  
Mazin Y. Shatnawi ◽  
Yousef N. Obeidallah ◽  
Ahmed K. Hijazi ◽  
Yaser A . Yousef

Abstract Four transition metal borohydrides (MTBHs, MT = Ni, Fe, Co, and Cu) were prepared by sonicating a mixture of the desired MT salt with excess NaBH4 in a nonaqueous DMF/CH3OH media. The process afforded bimetallic (Ni-BH4), trimetallic (Fe-BH4, Co-BH4), and mixed-valence (Cu-H, Cu-BH4) amorphous, ferromagnetic nanoparticles as identified by thermal, ATR-IR, X-Ray diffraction, and magnetic susceptibility techniques. The electrical conductivity (σ) of cold-pressed discs of these MTBHs shows a nonlinear increase while their thermal conductivity (κ) decreases in the temperature range of 303 ≤ T ≤ 373 K. The thermal energy transport occurs through phonon lattice dynamics rather than electronic. The σ/κ ratio shows a nonlinear steep increase from 9.4 to 270 KV-2 in Ni-BH4, while a moderate-weak increase is observed for Fe-BH4, Co-BH4, and Cu-BH4. Accordingly, the corresponding thermoelectric (TE) parameters S, PF, ZT, and η were evaluated. All TE data shows that the bimetallic Ni-BH4 (S, 80 μVK-1; PF, 259 μWm-1K-2; ZT 0.64; η, 2.56%) is a better TE semiconductor than the other three MT-BHs investigated in this study. Our findings show that Ni-BH4 is a promising candidate to exploit low-temperature waste heat from body heat, sunshine, and small domestic devices for small-scale TE applications.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jennifer Rehren ◽  
Maria Grazia Pennino ◽  
Marta Coll ◽  
Narriman Jiddawi ◽  
Christopher Muhando

Marine conservation areas are an important tool for the sustainable management of multispecies, small-scale fisheries. Effective spatial management requires a proper understanding of the spatial distribution of target species and the identification of its environmental drivers. Small-scale fisheries, however, often face scarcity and low-quality of data. In these situations, approaches for the prioritization of conservation areas need to deal with scattered, biased, and short-term information and ideally should quantify data- and model-specific uncertainties for a better understanding of the risks related to management interventions. We used a Bayesian hierarchical species distribution modeling approach on annual landing data of the heavily exploited, small-scale, and data-poor fishery of Chwaka Bay (Zanzibar) in the Western Indian Ocean to understand the distribution of the key target species and identify potential areas for conservation. Few commonalities were found in the set of important habitat and environmental drivers among species, but temperature, depth, and seagrass cover affected the spatial distribution of three of the six analyzed species. A comparison of our results with information from ecological studies suggests that our approach predicts the distribution of the analyzed species reasonably well. Furthermore, the two main common areas of high relative abundance identified in our study have been previously suggested by the local fisher as important areas for spatial conservation. By using short-term, catch per unit of effort data in a Bayesian hierarchical framework, we quantify the associated uncertainties while accounting for spatial dependencies. More importantly, the use of accessible and interpretable tools, such as the here created spatial maps, can frame a better understanding of spatio-temporal management for local fishers. Our approach, thus, supports the operability of spatial management in small-scale fisheries suffering from a general lack of long-term fisheries information and fisheries independent data.


Sign in / Sign up

Export Citation Format

Share Document