scholarly journals Effect of Different Finishing and Polishing Techniques on Surface Roughness of Two Universal Nanohybrid Composite Resins

2020 ◽  
Vol 8 (D) ◽  
pp. 182-188
Author(s):  
Ebaa Alagha ◽  
Waad Alotaibi ◽  
Maha Maghrbil ◽  
Laila Hakami ◽  
Maram Alrashedi

AIM: This study investigated the effect of different finishing and polishing systems on surface roughness of two types of universal nanohybrid composite resins. MATERIALS AND METHODS: A total number of 40 samples will be prepared to form two main equal groups of specimens (n = 20), according to the composite resin materials. Two universal nanohybrid resin composites were used in this study. First group (A1) is a universal nanohybrid composite resin (Mosaic) and the second group (A2) is a universal nanohybrid composite resin (Harmonize). Each group was subdivided equally into four equal subgroups (n = 5), according to the used finishing and polishing systems. Mold was made to prepare the specimens with a central hole of 4 mm in diameter and 4 mm in thickness. Light curing tip was placed touching the glass slab for 20 s then the cured specimens were removed from the mold and the specimens immediately and immersed in distilled water at 37°C for 24 h. Surface roughness (Ra) was measured using light sectioning vision system. SEM was done to support the results. RESULTS: The results showed that the lowest (Ra) values were recorded by the specimens under Myler strip followed by Polishing Discs treated specimens followed by Diacomp Plus specimens and the highest (Ra) values were recorded by white polishing stone specimens and regardless to finishing or polishing, it was found that mosaic resin composites group recorded statistically significant (p < 0.05) lower roughness mean value than Harmonize resin composites group. p ≤ 0.05 is statistically significant in all tests. CONCLUSION: Achieving long-lasting esthetics in resin composites restorations needs special attention for obtaining optimal resin polymerization and a perfect surface finish using the appropriate finishing and polishing system.

2006 ◽  
Vol 17 (1) ◽  
pp. 29-33 ◽  
Author(s):  
Janisse Martinelli ◽  
Fernanda de Carvalho Panzeri Pires-de-Souza ◽  
Luciana Assirati Casemiro ◽  
Camila Tirapelli ◽  
Heitor Panzer

This study compared the abrasion resistance of direct composite resins cured by light-emitting diodes (LED) and halogen light-curing units. Twenty specimens (12 mm in diameter; 1.0 mm thick) of each composite resin [TPH (Dentsply); Definite (Degussa); Charisma (Heraus Kulzer)] were prepared using a polytetrafluoroethylene matrix. Ten specimens per material were cured with the LED source and 10 with the halogen lamp for 40 s. The resin discs were polished, submitted to initial surface roughness reading (Ra initial - mum) in a roughness tester and stored in water at 37°C for 15 days. The specimens were weighed (M1) and submitted to simulated toothbrushing using slurry of water and dentifrice with high abrasiveness. After 100 minutes in the toothbrushing simulator, the specimens were cleaned, submitted to a new surface roughness reading (Ra final - mum) and reweighed (M2). Mass loss was determined as the difference between M1 and M2. Data were recorded and analyzed statistically by one-way ANOVA and Tukey Test at 5% significance level. The composite resin with greater size of inorganic fillers (TPH) showed the lowest mass loss and surface roughness means, indicating a higher resistance to toothbrush abrasion (p<0.05). Definite cured with LED presented the least resistance to toothbrush abrasion, showing the highest means of surface roughness and mass loss (p<0.05). The LED source did not show the same effectiveness as the halogen lamp for polymerizing this specific composite resin. When the composite resins were cured a halogen LCU, no statistically significant difference was observed among the materials (p>0.05). It may be concluded that the type of light-curing unit and the resin composition seemed to interfere with the materials' resistance to abrasion.


2019 ◽  
Vol 8 (4) ◽  
Author(s):  
Frederico dos Reis Goyatá ◽  
Sávio Morato de Lacerda Gontijo ◽  
José Alcides Almeida de Arruda ◽  
João Batista Novaes Júnior ◽  
Ivan Doche Barreiros ◽  
...  

The aim of the present report was to describe a case of direct composite resin restoration in tooth 46, with emphasis on the importance of polishing. A 21-year-old female patient dissatisfied with the aesthetic amalgam restoration of her tooth 46 came to the our institution for correction of the situation. The procedure performed consisted of registration of occlusal contacts, selection of resin color, removal of amalgam restoration, coronal reconstruction with composite resin, occlusal adjustment, finishing and polishing, with the use of atomic force microscopy of the resin before and after polishing. A correct clinical protocol for the posterior composite resins is fundamental for the optimization of aesthetic results, for clinical performance and for consequent restorative longevity. The atomic force microscopy images of the resin used before and after polishing emphasize the necessity and clinical importance of this operative step.Descriptors: Dental Materials; Dental Restoration, Permanent; Dental Polishing; Microscopy.ReferencesFrese C, Staehle HJ, Wolff D. The assessment of dentofacial esthetics in restorative dentistry: a review of the literature. J Am Dent Assoc. 2012;143(5):461-66.Moraschini V, Fai CK, Alto RM, dos Santos GO. Amalgam and resin composite longevity of posterior restorations: A systematic review and meta-analysis. J Dent. 2015;43(9):1043-50.Kovarik RE. Restoration of posterior teeth in clinical practice: evidence base for choosing amalgam versus composite. Dent Clin North Am. 2009;53(1):71-6.Kanzow P, Wiegand A, Schwendicke F. Cost-effectiveness of repairing versus replacing composite or amalgam restorations. J Dent. 2016;54:41-7.Lynch CD, Opdam NJ, Hickel R, Brunton PA, Gurgan S, Kakaboura A, et al. Guidance on posterior resin composites: Academy of Operative Dentistry - European Section. J Dent. 2014;42(4):377-83.Fernández E, Martín J, Vildósola P, Oliveira Junior OB, Gordan V, Mjor I et al. Can repair increase the longevity of composite resins? Results of a 10-year clinical trial. J Dent. 2015;43(2):279-86.Sabbagh J, McConnell RJ, McConnell MC. Posterior composites: Update on cavities and filling techniques. J Dent. 2017;57:86-90.Constantinescu DM, Apostol DA, Picu CR, Krawczyk K, Sieberer M. Mechanical properties of epoxy nanocomposites reinforced with functionalized silica nanoparticles. Proc Struct Integ. 2017;5:647-52.Yadav RD, Raisingani D, Jindal D, Mathur R. A comparative analysis of different finishing and polishing devices on nanofilled, microfilled, and hybrid composite: a scanning electron microscopy and profilometric study. Int J Clin Pediatr Dent. 2016;9(3):201-8.Fernandes ACBCJ, Assunção IV, Borges BCD, Costa GFA. Impact of additional polishing on the roughness and surface morphology of dental composite resins. Rev Port Estomatol Med Dent Cirur Maxilofac. 2016;57(2):74-81.Antonson SA, Yazici AR, Kilinc E, Antonson DE, Hardigan PC. Comparison of different finishing/polishing systems on surface roughness and gloss of resin composites. J Dent. 2011;39(Suppl 1):e9-17.Kumari CM, Bhat KM, Bansal R. Evaluation of surface roughness of different restorative composites after polishing using atomic force microscopy. J Conserv Dent. 2016;19(1):56-62.Pimentel PEZ, Goyatá FR, Cunha LG. Influência da técnica de polimento na lisura superficial de resinas compostas. Clin int j braz dent. 2012;8(2):226-34.Chour RG, Moda A, Arora A, Arafath MY, Shetty VK, Rishal Y. Comparative evaluation of effect of different polishing systems on surface roughness of composite resin: An in vitro study. J Int Soc Prev Community Dent. 2016;6(Suppl 2):166-70.Lins FC, Ferreira RC, Silveira RR, Pereira CN, Moreira AN, Magalhaes CS. Surface roughness, microhardness, and microleakage of a silorane-based composite resin after immediate or delayed finishing/polishing. Int J Dent. 2016;2016:8346782.


2015 ◽  
Vol 26 (3) ◽  
pp. 268-271 ◽  
Author(s):  
Ana Carolina Cabral Roque ◽  
Lauren Oliveira Lima Bohner ◽  
Ana Paula Terossi de Godoi ◽  
Vivian Colucci ◽  
Silmara Aparecida Milori Corona ◽  
...  

The purpose of this study was to determine the influence of hydrochloric acid on surface roughness of composite resins subjected to brushing. Sixty samples measuring 2 mm thick x 6 mm diameter were prepared and used as experimental units. The study presented a 3x2 factorial design, in which the factors were composite resin (n=20), at 3 levels: microhybrid composite (Z100), nanofilled composite (FiltekTM Supreme), nanohybrid composite (Ice), and acid challenge (n=10) at 2 levels: absence and presence. Acid challenge was performed by immersion of specimens in hydrochloric acid (pH 1.2) for 1 min, 4 times per day for 7 days. The specimens not subjected to acid challenge were stored in 15 mL of artificial saliva at 37 oC. Afterwards, all specimens were submitted to abrasive challenge by a brushing cycle performed with a 200 g weight at a speed of 356 rpm, totaling 17.8 cycles. Surface roughness measurements (Ra) were performed and analyzed by ANOVA and Tukey test (p≤0.05). Surface roughness values were higher in the presence (1.07±0.24) as compared with the absence of hydrochloric acid (0.72±0.04). Surface roughness values were higher for microhybrid (1.01±0.27) compared with nanofilled (0.68 ±0.09) and nanohybrid (0.48±0.15) composites when the specimens were not subjects to acid challenge. In the presence of hydrochloric acid, microhybrid (1.26±0.28) and nanofilled (1.18±0,30) composites presents higher surface roughness values compared with nanohybrid (0.77±0.15). The hydrochloric acid affected the surface roughness of composite resin subjected to brushing.


2021 ◽  
pp. 096739112199958
Author(s):  
Vahti Kılıç ◽  
Feridun Hurmuzlu ◽  
Yılmaz Ugur ◽  
Suzan Cangul

The aim of the present study was to investigate and compare the quantity of residual monomers leached from the bulk-fill composites with different compositions polymerized at varying layer thickness. Three bulk-fill (X-tra-fil, Beautifil Bulk Restorative, Fill-Up) and a nanohybrid composite (Filtek Z550) were used for the study. The composite resin samples were prepared with a stainless steel mold. For each composite, two groups were constructed. The samples in the first group were prepared using the 2 + 2 mm layering technique. In the second group, the composite samples were applied as a 4 mm-thick one layer and polymerized. Then, each composite samples were kept in a 75% ethanol solution and residual monomers released from composite resins were analyzed with an HPLC device after 24hour and 1 month. The data were analyzed using Kruskal-Wallis and Mann-Whitney U tests. Except the Fill-Up, all of residual monomer elution from the bulk-fill composites was significantly affected by the layer thickness (p < 0.05). The greatest monomer release was detected at 1 month after polymerization as a single 4 mm layer for Beautifil Bulk Restorative. Fill-Up composite showed similar residual monomer release in polymerization at different layer thicknesses compared to other composite resins. In the 2 + 2 mm layering technique, the least monomer elution was detected in the Filtek Z550 composite group. While Bis-GMA was the most released monomer in X-tra fil composite, UDMA was the most released monomer in all other composite resins. During polymerization of the bulk-fill composite, the layer thickness of the composite applied may affect the amount of residual monomers released from the composite resins. Conventional composites may release less monomer than bulk-fill composites when used with layering.


2019 ◽  
Vol 8 (1) ◽  
pp. 30
Author(s):  
Johanna Chandra ◽  
Laksmiari Setyowati ◽  
Setyabudi Setyabudi

Background: Cigarette smoking is a public health problem that may influence physical properties of dental composites. Surface roughness is one of the physical properties of restorative materials that can influence their success. The use of nanofilled and nanohybrid composites in dentistry has substantially increased over the past few years. Purpose: The purpose of this study was to evaluate the surface roughness of nanofilled and nanohybrid composite resins exposed to kretek cigarette smoke. Methods: Twelve cylindrical specimens were prepared of each material and divided into two groups (n=6). For the control groups, the specimens were immersed in distilled water for 24 hours at 37oC and the water was renewed daily. For the experimental groups, the specimens were exposed daily to kretek cigarette smoke, then washed and stored in distilled water at 37oC. After 21 days, specimens were measured using a Surface Roughness Tester and the data was statistically analyzed. Result: Independent-T Test revealed that there were statistically significant differences in the surface roughness between control and experimental groups both nanofilled and nanohybrid, and between experimental groups nanofilled and nanohybrid. Conclusion: The exposure to kretek cigarette smoke can significantly increase the surface roughness of nanohybrid composites more than nanofilled composites.


Author(s):  
Anuradha Vitthal Wankhade ◽  
Sharad Basavraj Kamat ◽  
Santosh Irappa Hugar ◽  
Girish Shankar Nanjannawar ◽  
Sumit Balasaheb Vhate

Introduction: New generation composite resin materials have revolutionized the art of aesthetic dentistry. The clinical success is dependent on effective polymerisation and surface hardness which in turn are dependent on the performance of Light Curing Units (LCU). This study utilises surface hardness as a measure of degree of polymerisation of composite resins achieved by LCUs. Aim: To evaluate the difference in surface hardness of nanohybrid and microhybrid resin composites cured by light curing systems, Light Emitting Diode (LED) and Quartz Tungsten Halogen (QTH). Materials and Methods: In this invitro experimental study, two types of hybrid composites (Nanohybrid and Microhybrid) were tested for surface hardness by using two different light curing systems (LED and QTH). All the Nanohybrid and Microhybrid specimens were cured using LED and QTH LCUs, thus giving four combinations. A total of 60 specimens (6 mm diameter and 2 mm depth) were prepared using Teflon mould with 15 samples for each combination. Surface hardness was measured on upper and lower surface after 24 hours and hardness ratio was calculated. Data was analysed using independent t-test for intergroup comparison. Level of significance was kept at 5%. Results: Surface hardness of resin composites cured by LED LCU was greater than those cured by QTH LCU. Additionally, the hardness value was greater for the upper surface. Nanohybrids showed better surface hardness than Microhybrids for both the LCUs. Conclusion: Nanohybrid composite resins and LED system were found to be more effective in terms of surface hardness as compared to their counterparts.


2016 ◽  
Vol 10 (02) ◽  
pp. 170-175 ◽  
Author(s):  
Gabriela Migliorin da Rosa ◽  
Luciana Mendonça da Silva ◽  
Márcio de Menezes ◽  
Hugo Felipe do Vale ◽  
Diego Ferreira Regalado ◽  
...  

ABSTRACT Objectives: The present study verified the influence of whitening dentifrices on the surface roughness of a nanohybrid composite resin. Materials and Methods: Thirty-two specimens were prepared with Filtek™ Z350 XT (3M/ESPE) and randomly divided into four groups (n = 08) that were subjected to brushing simulation equivalent to the period of 1 month. The groups assessed were a control group with distilled water (G1), Colgate Total 12 Professional Clean (G2), Sensodyne Extra Whitener Extra Fresh (G3), and Colgate Luminous White (G4). A sequence of 90 cycles was performed for all the samples. The initial roughness of each group was analyzed by the Surface Roughness Tester (TR 200-TIME Group Inc., CA, USA). After the brushing period, the final roughness was measured, and the results were statistically analyzed using nonparametric Kruskal–Wallis and Dunn tests for intergroup roughness comparison in the time factor. For intragroup and “Δ Final − Initial” comparisons, the Wilcoxon test and (one-way) ANOVA were, respectively, performed (α = 0.05). Results: The roughness mean values before and after brushing showed no statistically significant difference when the different dentifrices were used. None of the dentifrices analyzed increased significantly the nanohybrid composite resin surface roughness in a 1 month of tooth brushing simulation. Conclusions: These results suggest that no hazardous effect on the roughness of nanohybrid composite resin can be expected when whitening dentifrices are used for a short period. Similar studies should be conducted to analyze other esthetic composite materials.


2005 ◽  
Vol 16 (1) ◽  
pp. 39-44 ◽  
Author(s):  
Silvia Helena Barbosa ◽  
Régia Luzia Zanata ◽  
Maria Fidela de Lima Navarro ◽  
Osvaldo Benoni Nunes

This study examined the average surface roughness (Ra, µm) of 2 microfilled (Durafill and Perfection), 1 hybrid (Filtek Z250) and 2 packable composite resins (Surefil and Fill Magic), before (baseline) and after eight different finishing and polishing treatments. The surface roughness was assessed using a profilometer. Ten specimens of each composite resin were randomly subjected to one of the following finishing/polishing techniques: A - carbide burs; B - fine/extrafine diamond burs; C - Sof-Lex aluminum oxide discs; D - Super-Snap aluminum oxide discs; E - rubber polishing points + fine/extrafine polishing pastes; F - diamond burs + rubber polishing points + fine/extrafine polishing pastes; G - diamond burs + Sof-Lex system; H - diamond burs + Super-Snap system. Data were analyzed using two-way ANOVA and Tukey's HSD test. Significant differences (p<0.05) were detected among both the resins and the finishing/polishing techniques. For all resins, the use of diamond burs resulted in the greatest surface roughness (Ra: 0.69 to 1.44 µm). The lowest Ra means were obtained for the specimens treated with Sof-Lex discs (Ra: 0.11 to 0.25 µm). The Ra values of Durafill were lower than those of Perfection and Filtek Z250, and these in turn had lower Ra than the packable composite resins. Overall, the smoothest surfaces were obtained with the use the complete sequence of Sof-Lex discs. In areas that could not be reached by the aluminum oxide discs, the carbide burs and the association between rubber points and polishing pastes produced satisfactory surface smoothness for the packable and hybrid composite resins, respectively.


2007 ◽  
Vol 339 ◽  
pp. 147-151
Author(s):  
Chun Hua Ju ◽  
Yi Xie

Surface roughness is an important quality characteristic in grinding. Measurement of surface roughness by means of mechanical stylus is widely done in metrology. In this paper, a new machine vision system has been utilized to quantify the surface roughness of machined surfaces (ground and milled). Compared with other measurement methods, it is accurate, quick and credible. This system is mounted on the grinding machine and automates the measurement process by using computer control to automatically position the CCD and capture digital images of machined surfaces between grinding cycles. It was proposed that the proportional formula was used in calibrating this system, and calibration precision meets application requirement. Not only the statistic character of gray image but also which of edge image were calculated out. These characters include the mean value of pixels (Mean), standard deviation (σ), maximal value (Max) and minimal value (Min), the number of pixels on the examine line(Count), etc. It was found out that the standard deviation value σ of the gray image could express the surface roughness most. The correlation between σ and Ra is established by interpolating σ value used Lagrange interpolation law, and the σ value is converted into Ra value through the calculation procedure finally.


2005 ◽  
Vol 288-289 ◽  
pp. 645-648
Author(s):  
Hwan Kim ◽  
Sung Ho Park ◽  
I.Y. Jung ◽  
S.B. Jeon ◽  
Kwon Yong Lee

In this study, the wear characteristics of five different dental composite resins cured by conventional halogen light and LED light sources were investigated. Five different dental composite resins of Surefil, Z100, Dyract AP, Fuji II LC and Compoglass were worn against a zirconia ceramic ball using a pin-on-disk type wear tester with 15 N contact force in a reciprocal sliding motion of sliding distance of 10 mm/cycle at 1Hz under the room temperature dry condition. The wear variations of dental composite resins were linearly increased as the number of cycles increased. It was observed that the wear resistances of these specimens were in the order of Dyract AP > Surefil > Compoglass > Z100 > Fuji ı LC. On the morphological observations by SEM, the large crack formation on the sliding track of Fuji ıLC specimen was the greatest among all resin composites. Dyract AP showed less wear with few surface damage. There is no significant difference in wear performance between conventional halogen light curing and light emitting diodes curing sources. It indicates that a light emitting diodes (LED) source can replace a halogen light source as curing unit for composite resin restorations.


Sign in / Sign up

Export Citation Format

Share Document