scholarly journals Promoter DNA methylation and expression levels of HOXA4, HOXA5 and MEIS1 in acute myeloid leukemia

2015 ◽  
Vol 11 (5) ◽  
pp. 3948-3954 ◽  
Author(s):  
EWA MUSIALIK ◽  
MATEUSZ BUJKO ◽  
PAULINA KOBER ◽  
MONIKA ANNA GRYGOROWICZ ◽  
MARTA LIBURA ◽  
...  
Blood ◽  
2011 ◽  
Vol 117 (1) ◽  
pp. 234-241 ◽  
Author(s):  
Sanne Lugthart ◽  
Maria E. Figueroa ◽  
Eric Bindels ◽  
Lucy Skrabanek ◽  
Peter J. M. Valk ◽  
...  

Abstract DNA methylation patterns are frequently dysregulated in cancer, although little is known of the mechanisms through which specific gene sets become aberrantly methylated. The ecotropic viral integration site 1 (EVI1) locus encodes a DNA binding zinc-finger transcription factor that is aberrantly expressed in a subset of acute myeloid leukemia (AML) patients with poor outcome. We find that the promoter DNA methylation signature of EVI1 AML blast cells differs from those of normal CD34+ bone marrow cells and other AMLs. This signature contained 294 differentially methylated genes, of which 238 (81%) were coordinately hypermethylated. An unbiased motif analysis revealed an overrepresentation of EVI1 binding sites among these aberrantly hypermethylated loci. EVI1 was capable of binding to these promoters in 2 different EVI1-expressing cell lines, whereas no binding was observed in an EVI1-negative cell line. Furthermore, EVI1 was observed to interact with DNA methyl transferases 3A and 3B. Among the EVI1 AML cases, 2 subgroups were recognized, of which 1 contained AMLs with many more methylated genes, which was associated with significantly higher levels of EVI1 than in the cases of the other subgroup. Our data point to a role for EVI1 in directing aberrant promoter DNA methylation patterning in EVI1 AMLs.


2014 ◽  
Vol 32 (6) ◽  
pp. 548-556 ◽  
Author(s):  
Guido Marcucci ◽  
Pearlly Yan ◽  
Kati Maharry ◽  
David Frankhouser ◽  
Deedra Nicolet ◽  
...  

PurposeMolecular risk stratification of acute myeloid leukemia (AML) is largely based on genetic markers. However, epigenetic changes, including DNA methylation, deregulate gene expression and may also have prognostic impact. We evaluated the clinical relevance of integrating DNA methylation and genetic information in AML.MethodsNext-generation sequencing analysis of methylated DNA identified differentially methylated regions (DMRs) associated with prognostic mutations in older (≥ 60 years) cytogenetically normal (CN) patients with AML (n = 134). Genes with promoter DMRs and expression levels significantly associated with outcome were used to compute a prognostic gene expression weighted summary score that was tested and validated in four independent patient sets (n = 355).ResultsIn the training set, we identified seven genes (CD34, RHOC, SCRN1, F2RL1, FAM92A1, MIR155HG, and VWA8) with promoter DMRs and expression associated with overall survival (OS; P ≤ .001). Each gene had high DMR methylation and lower expression, which were associated with better outcome. A weighted summary expression score of the seven gene expression levels was computed. A low score was associated with a higher complete remission (CR) rate and longer disease-free survival and OS (P < .001 for all end points). This was validated in multivariable models and in two younger (< 60 years) and two older independent sets of patients with CN-AML. Considering the seven genes individually, the fewer the genes with high expression, the better the outcome. Younger and older patients with no genes or one gene with high expression had the best outcomes (CR rate, 94% and 87%, respectively; 3-year OS, 80% and 42%, respectively).ConclusionA seven-gene score encompassing epigenetic and genetic prognostic information identifies novel AML subsets that are meaningful for treatment guidance.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Ting-juan Zhang ◽  
Zi-jun Xu ◽  
Yu Gu ◽  
Ji-chun Ma ◽  
Xiang-mei Wen ◽  
...  

Abstract Background Obesity confers enhanced risk for multiple diseases including cancer. The DNA methylation alterations in obesity-related genes have been implicated in several human solid tumors. However, the underlying role and clinical implication of DNA methylation of obesity-related genes in acute myeloid leukemia (AML) has yet to be elucidated. Results In the discovery stage, we identified that DNA methylation-associated LEP expression was correlated with prognosis among obesity-related genes from the databases of The Cancer Genome Atlas. In the validation stage, we verified that LEP hypermethylation was a frequent event in AML by both targeted bisulfite sequencing and real-time quantitative methylation-specific PCR. Moreover, LEP hypermethylation, correlated with reduced LEP expression, was found to be associated with higher bone marrow blasts, lower platelets, and lower complete remission (CR) rate in AML. Importantly, survival analysis showed that LEP hypermethylation was significantly associated with shorter overall survival (OS) in AML. Moreover, multivariate analysis disclosed that LEP hypermethylation was an independent risk factor affecting CR and OS among non-M3 AML. By clinical and bioinformatics analysis, LEP may be also regulated by miR-517a/b expression in AML. Conclusions Our findings indicated that the obesity-related gene LEP methylation is associated with LEP inactivation, and acts as an independent prognostic predictor in AML.


2020 ◽  
Vol 15 (1) ◽  
pp. 1013-1023
Author(s):  
Lina Xing ◽  
Jinhai Ren ◽  
Xiaonan Guo ◽  
Shukai Qiao ◽  
Tian Tian

AbstractPrevious research has revealed the involvement of microRNA-212-5p (miR-212-5p) and cyclin T2 (CCNT2) in acute myeloid leukemia (AML). However, whether the miR-212-5p/CCNT2 axis is required for the function of decitabine in AML has not been well elucidated. Quantitative reverse transcription-polymerase chain reaction was used to examine enrichment of miR-212-5p. The relationship between CCNT2 and miR-212-5p was verified by the luciferase reporter assay. Cell apoptosis was evaluated by flow cytometry and western blot. CCK-8 assay was performed to determine cell viability. Decitabine significantly repressed cell viability, while promoted cell apoptosis. Meanwhile, the expression levels of cyclinD1, CDK4, and Bcl-2 were suppressed in cells with decitabine exposure, but Bax and caspase-3 expression levels were upregulated. Besides, miR-212-5p upregulation had the similar function with decitabine in AML cell proliferation and apoptosis. Subsequently, restoration of CCNT2 attenuated miR-212-5p overexpression-induced effects in Kasumi-1 and SKNO-1 cells. In addition, miR-212-5p depletion reversed decitabine-induced CCNT2 downregulation. The miR-212-5p/CCNT2 axis had an implication in the anti-leukemic effect of decitabine in AML.


2013 ◽  
Vol 37 (2) ◽  
pp. 190-196 ◽  
Author(s):  
Rainer Claus ◽  
Dietmar Pfeifer ◽  
Maika Almstedt ◽  
Manuela Zucknick ◽  
Björn Hackanson ◽  
...  

2017 ◽  
Vol 99 (6) ◽  
pp. 544-552 ◽  
Author(s):  
Sabine Kayser ◽  
Maximilian Feszler ◽  
Julia Krzykalla ◽  
Matthias Schick ◽  
Michael Kramer ◽  
...  

Leukemia ◽  
2021 ◽  
Author(s):  
Tanja Božić ◽  
Chao-Chung Kuo ◽  
Jan Hapala ◽  
Julia Franzen ◽  
Monika Eipel ◽  
...  

AbstractAssessment of measurable residual disease (MRD) upon treatment of acute myeloid leukemia (AML) remains challenging. It is usually addressed by highly sensitive PCR- or sequencing-based screening of specific mutations, or by multiparametric flow cytometry. However, not all patients have suitable mutations and heterogeneity of surface markers hampers standardization in clinical routine. In this study, we propose an alternative approach to estimate MRD based on AML-associated DNA methylation (DNAm) patterns. We identified four CG dinucleotides (CpGs) that commonly reveal aberrant DNAm in AML and their combination could reliably discern healthy and AML samples. Interestingly, bisulfite amplicon sequencing demonstrated that aberrant DNAm patterns were symmetric on both alleles, indicating that there is epigenetic crosstalk between homologous chromosomes. We trained shallow-learning and deep-learning algorithms to identify anomalous DNAm patterns. The method was then tested on follow-up samples with and without MRD. Notably, even samples that were classified as MRD negative often revealed higher anomaly ratios than healthy controls, which may reflect clonal hematopoiesis. Our results demonstrate that targeted DNAm analysis facilitates reliable discrimination of malignant and healthy samples. However, since healthy samples also comprise few abnormal-classified DNAm reads the approach does not yet reliably discriminate MRD positive and negative samples.


2015 ◽  
Vol 7 ◽  
pp. BIC.S19614 ◽  
Author(s):  
Marwa H. Saied ◽  
Jacek Marzec ◽  
Sabah Khalid ◽  
Paul Smith ◽  
Gael Molloy ◽  
...  

Trisomy 8 acute myeloid leukemia (AML) is the commonest numerical aberration in AML. Here we present a global analysis of trisomy 8 AML using methylated DNA immunoprecipitation-sequencing (MeDIP-seq). The study is based on three diagnostic trisomy 8 AML and their parallel relapse status in addition to nine non-trisomic AML and four normal bone marrows (NBMs). In contrast to non-trisomic DNA samples, trisomy 8 AML showed a characteristic DNA methylation distribution pattern because an increase in the frequency of the hypermethylation signals in chromosome 8 was associated with an increase in the hypomethylation signals in the rest of the chromosomes. Chromosome 8 hypermethylation signals were found mainly in the CpG island (CGI) shores and interspersed repeats. Validating the most significant differentially methylated CGI ( P = 7.88 · 10–11identified in trisomy 8 AML demonstrated a specific core region within the gene body of HHEX, which was significantly correlated with HHEX expression in both diagnostic and relapse trisomy 8 AMLs. Overall, the existence of extra chromosome 8 was associated with a global impact on the DNA methylation distribution with identification of HHEX gene methylation as a potential diagnostic marker for trisomy 8 AML.


2014 ◽  
Vol 16 (2) ◽  
pp. 207-215 ◽  
Author(s):  
Gerald B.W. Wertheim ◽  
Catherine Smith ◽  
Maria E. Figueroa ◽  
Michael Kalos ◽  
Adam Bagg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document