scholarly journals Decitabine shows anti-acute myeloid leukemia potential via regulating the miR-212-5p/CCNT2 axis

2020 ◽  
Vol 15 (1) ◽  
pp. 1013-1023
Author(s):  
Lina Xing ◽  
Jinhai Ren ◽  
Xiaonan Guo ◽  
Shukai Qiao ◽  
Tian Tian

AbstractPrevious research has revealed the involvement of microRNA-212-5p (miR-212-5p) and cyclin T2 (CCNT2) in acute myeloid leukemia (AML). However, whether the miR-212-5p/CCNT2 axis is required for the function of decitabine in AML has not been well elucidated. Quantitative reverse transcription-polymerase chain reaction was used to examine enrichment of miR-212-5p. The relationship between CCNT2 and miR-212-5p was verified by the luciferase reporter assay. Cell apoptosis was evaluated by flow cytometry and western blot. CCK-8 assay was performed to determine cell viability. Decitabine significantly repressed cell viability, while promoted cell apoptosis. Meanwhile, the expression levels of cyclinD1, CDK4, and Bcl-2 were suppressed in cells with decitabine exposure, but Bax and caspase-3 expression levels were upregulated. Besides, miR-212-5p upregulation had the similar function with decitabine in AML cell proliferation and apoptosis. Subsequently, restoration of CCNT2 attenuated miR-212-5p overexpression-induced effects in Kasumi-1 and SKNO-1 cells. In addition, miR-212-5p depletion reversed decitabine-induced CCNT2 downregulation. The miR-212-5p/CCNT2 axis had an implication in the anti-leukemic effect of decitabine in AML.

2018 ◽  
Vol 38 (20) ◽  
Author(s):  
Dong-Mei Wu ◽  
Xin Wen ◽  
Xin-Rui Han ◽  
Shan Wang ◽  
Yong-Jian Wang ◽  
...  

ABSTRACT In the current study, we were interested in exploring the molecular mechanism of circular RNA DLEU2 (circRNA-DLEU2) (hsa_circ_0000488) and microRNA 496 (miR-496), as well as PRKACB, in human acute myeloid leukemia (AML) cell activities. The RNA expression levels of circRNA-DLEU2, hsa-miR-496, and PRKACB were assessed by quantitative real-time PCR (qRT-PCR). The proliferation and apoptosis abilities of the cells were determined by CCK8 assay and flow cytometry analysis. Target relationships between circRNA-DLEU2 and miR-496, as well as PRKACB, were analyzed by luciferase reporter assay and probe assay. Immunoblotting assays were used to detect the protein expression level of PRKACB. We also did in vivo experiments to observe tumor formation after overexpression of circRNA-DLEU2. Our data showed that circRNA-DLEU2 was upregulated in AML tissues and cells, which promoted AML cell proliferation and inhibited cell apoptosis. circRNA-DLEU2 promoted AML tumor formation in vivo. miR-496 was inhibited by circRNA-DLEU2 and was downregulated in AML tissues. circRNA-DLEU2 inhibited miR-496 expression and promoted PRKACB expression. miR-496 antagonized the effects of PRKACB on MOLM-13 cell proliferation and apoptosis. Collectively, circRNA-DLEU2 accelerated human AML by suppressing miR-496 and promoting PRKACB expression.


2020 ◽  
Vol 19 (1) ◽  
pp. 52-57
Author(s):  
Li Wen ◽  
Yuli Liang ◽  
Jing Li ◽  
Meijie Quan ◽  
Yanxiao Li ◽  
...  

Acute myeloid leukemia remains a therapeutic challenge in the medical field and improvement in chemotherapeutics is needed. In this paper, MOLM-13 cells were treated with different concentrations (0, 10, 50, 100 µM) of dentatin and cell viability was detected using Cell Counting Kit-8. Cell cycle and cell apoptosis rates were evaluated by flow cytometry. The relevant proteins were assessed by Western blot. Consequently, the results show that dentatin inhibits the cell viability in a dose-dependent manner. In addition, dentatin arrests the cell cycle at G1 phase (P ‹ 0.01). Moreover, dentatin induces the cell apoptosis. Further study revealed that dentatin downregulates the phosphorylated STAT3 and CyclinD1 but upregulates the cleaved caspase-3. In summary, this study confirms that dentatin inhibits MOLM-13 cell viability, increases cell apoptosis, and retards cell cycle.


2017 ◽  
Vol 41 (5) ◽  
pp. 1981-1992 ◽  
Author(s):  
Liru Liu ◽  
Weihua Ren ◽  
Kuisheng Chen

Background: MiR-34a is identified as a tumor suppressor gene and involved in acute myeloid leukemia (AML) development. However, the regulatory mechanism of miR-34a in AML is unclear. Methods: The expression of miR-34a and HMGB1 in HL-60, THP-1 and HS-5 cells were detected by qRT-PCR and western blot. Lipofectamine 2000 was used to transfect with miR-34a mimics, miR-34a inhibitor, si-HMGB1, pcDNA 3.1-HMGB1, and corresponding controls. The apoptosis and autophagy of transfected AML cells were assessed by flow cytometry and western blot, respectively. Bioinformatics software and dual luciferase reporter assay were applied to predict and verify the target of miR-34a. The effects of miR-34a mimics or si-HMGB1 on chemotherapy-induced autophagy were further explored in HL-60 cells treated with all-trans retinoic acid (ATRA) along with lysosomal protease inhibitors E64d and pepstatin A. Results: MiR-34a was lower expressed and HMGB1 mRNA and proteins were both higher expressed in HL-60 and THP-1 cells compared with that in HS-5 cells. Higher expression levels of MiR-34 and lower expression levels of HMGB1 both significantly promoted apoptosis and inhibited autophagy in HL-60 and THP-1 cells. Dual luciferase reporter system confirmed that HMGB1 was a potential target of miR-34a. Moreover, overexpression of HMGB1 dramatically reversed the promotion of apoptosis and inhibition of autophagy mediated by higher expression level of miR-34a. Higher expression level of miR-34a and lower expression level of HMGB1 both inhibited chemotherapy-induced autophagy by stimulating the LC3 conversion. Conclusion: MiR-34a promoted cell apoptosis and inhibited autophagy by targeting HMGB1. Therefore, miR-34a may be a potential promising molecular target for AML therapy.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Li Li ◽  
Weidong Zhao

Abstract Background Non-coding RNAs (ncRNAs) have been identified as key regulators during the pathogenesis and development of cancers. However, most of ncRNAs have never been explored in acute myeloid leukemia (AML). Methods Gene expression was evaluated by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. Functional assays were performed to assess the cellular processes in AML cells. The relationship between genes was verified by means of a series of mechanism assays. Results Transmembrane phosphatase with tensin homology pseudogene 1 (TPTEP1) was notably downregulated in AML cells, and functionally acted as a proliferation-inhibitor. Additionally, TPTEP1 suppressed AML cell growth by inactivating c-Jun N-terminal kinase (JNK)/c-JUN signaling pathway. MicroRNA (MiR)-1303, as an oncogene, was predicted and validated as a target of c-JUN in AML cells. Also, TPTEP1 interacted with miR-1303 and they were mutually silenced by each other in AML cells. Furthermore, the effect of TPTEP1 overexpression on AML cell proliferation was counteracted under miR-1303 upregulation. Conclusion Our findings unmasked a feedback loop of TPTEP1/JNK/c-JUN/miR-1303 axis in AML cells, suggesting TPTEP1 and miR-1303 as potential targets for developing therapeutic strategies for AML patients.


2020 ◽  
Author(s):  
Hong Qu ◽  
Yongfang Chen ◽  
Wenjing Zeng ◽  
Xiaohua Huang ◽  
Shuqin Cheng

Abstract Background: Purpose of this study was to explore the influence of miR-4262 on the progression of acute myeloid leukemia (AML) and its molecular mechanism.Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) was carried out to assess the expression of miR-4262 in AML serum and cell lines. MTT, Transwell assays and flow cytometry were adopted to investigate the effect of miR-4262 on cell proliferation, invasion, migration and apoptosis abilities of HL-60 cells respectively. Luciferase reporter assay was conducted to reveal the target relationship of miR-4262 and KLF6. Western blot analysis was utilized to evaluate the expression level of proteins.Results: Relative expression of miR-4262 was up-regulated in AML serum and cell lines (P<0.05). miR-4262 expression was closely related to FAB classification (P=0.002) of AML patients. miR-4262 mimics could promotes the proliferation, invasion and migration of HL-60 cells, while miR-4262 inhibitor is obviously weakened these biological behaviors. Luciferase assay illustrated that miR-4262 can directly interact with KLF6 3’UTR. Up-regulation of miR-4262 could decrease KLF6 level, and increase EGFR level, while the down-regulation of miR-4262 showed the opposite results. Moreover, KLF6 gene knockdown reversed the results caused by miR-4262 inhibitor (P<0.05). Inhibition of KLF6 could significantly promoted the proliferation, invasion and migration of HL-60 cells which is caused by miR-4262 inhibitor.Conclusions: miR-4262 was obviously increased in AML serum and cells, it promotes the progression of AML by regulating KLF6.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jizhe Yu ◽  
Yushuang Qin ◽  
Naxin Zhou

Abstract Background The dysregulation of circular RNAs (circRNAs) has been identified in various human diseases, including osteoarthritis (OA). The purpose of this study was to identify the role and mechanism of circ_SLC39A8 in regulating the progression of OA. Methods The expression levels of circ_SLC39A8, miR-591, and its potential target gene, interleukin-1-receptor-associated kinase 3 (IRAK3), were identified by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability and apoptosis were determined by Cell Counting Kit-8 (CCK-8) assay and flow cytometry, respectively. The relationship between miR-591 and circ_SLC39A8 or IRAK3 was predicted by bioinformatics tools and verified by dual-luciferase reporter. Results Circ_SLC39A8 and IRAK3 were upregulated and miR-591 was downregulated in OA cartilage tissues. Knockdown of circ_SLC39A8 inhibited apoptosis and inflammation in OA chondrocytes, while these effects were reversed by downregulating miR-591. Promotion cell viability effects of miR-591 were partially reversed by IRAK3 overexpression. Conclusion Our findings indicated that knockdown of circ_SLC39A8 delayed the progression of OA via modulating the miR-591-IRAK3 axis, providing new insight into the molecular mechanisms of OA pathogenesis.


2021 ◽  
Vol 20 ◽  
pp. 153303382198981
Author(s):  
Xin-bo Sun ◽  
Yong-wei Chen ◽  
Qi-sheng Yao ◽  
Xu-hua Chen ◽  
Min He ◽  
...  

Background: Prostate cancer is a common malignant tumor with a high incidence. MicroRNAs (miRNAs) have been shown to be important post-transcriptional regulators during tumorigenesis. This study aimed to explore the effect of miR-144 on PCa proliferation and apoptosis. Material and Methods: The expression of miR-144 and EZH2 were examined in clinical PCa tissues. PCa cell line LNCAP and DU-145 was employed and transfected with miR-144 mimics or inhibitors. The correlation between miR-144 and EZH2 was verified by luciferase reporter assay. Cell viability, apoptosis and migratory capacity were detected by CCK-8, flow cytometry assay and wound healing assay. The protein level of EZH2, E-Cadherin, N-Cadherin and vimentin were analyzed by western blotting. Results: miR-144 was found to be negatively correlated to the expression of EZH2 in PCa tissues. Further studies identified EZH2 as a direct target of miR-144. Moreover, overexpression of miR-144 downregulated expression of EZH2, reduced cell viability and promoted cell apoptosis, while knockdown of miR-144 led to an inverse result. miR-144 also suppressed epithelial-mesenchymal transition level of PCa cells. Conclusion: Our study indicated that miR-144 negatively regulate the expression of EZH2 in clinical specimens and in vitro. miR-144 can inhibit cell proliferation and induce cell apoptosis in PCa cells. Therefore, miR-144 has the potential to be used as a biomarker for predicting the progression of PCa.


2017 ◽  
Vol 99 (6) ◽  
pp. 544-552 ◽  
Author(s):  
Sabine Kayser ◽  
Maximilian Feszler ◽  
Julia Krzykalla ◽  
Matthias Schick ◽  
Michael Kramer ◽  
...  

2020 ◽  
Vol 42 (5-6) ◽  
pp. 187-194
Author(s):  
Ruixiang Li ◽  
Jiahua Hu ◽  
Sue Cao

Temporal lobe epilepsy (TLE) is the most familiar localized epilepsy in children. MicroRNAs (miRNAs) are essential for the inhibition or promotion of numerous diseases. This study aimed to detect the expression of miR-135b-5p and primarily uncover its underlying function and mechanism in children with TLE. Quantitative real-time polymerase chain reaction was used to evaluate the expression of miR-135b-5p in children with TLE and in a rat model of epilepsy. MTT assay and flow cytometric apoptosis assay were conducted to evaluate the effects of miR-135b-5p on cell viability and apoptosis. Additionally, the dual luciferase reporter assay was performed to confirm the direct target of miR-135b-5p. Our data showed that the expression of miR-135b-5p was significantly decreased in children with TLE and in the epileptic rat neuron model. The dysregulation of miR-135b-5p could serve as a promising diagnostic biomarker for children with TLE. The overexpression of miR-135b-5p moderated the adverse influence on cell viability and apoptosis induced by magnesium-free medium. SIRT1 was identified as a target gene of miR-135b-5p. These results proved that miR-135b-5p might serve as a potential diagnostic biomarker in children with TLE. Overexpression of miR-135b-5p alleviates the postepileptic influence on cell viability and apoptosis by targeting SIRT1.


Sign in / Sign up

Export Citation Format

Share Document