scholarly journals CD146+ skeletal stem cells from growth plate exhibit specific chondrogenic differentiation capacity in vitro

2017 ◽  
Vol 16 (6) ◽  
pp. 8019-8028 ◽  
Author(s):  
Ying-Xing Wu ◽  
Xing-Zhi Jing ◽  
Yue Sun ◽  
Ya-Ping Ye ◽  
Jia-Chao Guo ◽  
...  
2021 ◽  
Vol 11 (12) ◽  
pp. 2337-2345
Author(s):  
Junhui Lai ◽  
Qin Yang ◽  
Ruining Liang ◽  
Weijun Guan ◽  
Xiuxia Li

The growth plate is essential in long bone formation and contains a wealth of skeletal stem cells (SSCs). Though the origin and the mechanism for SSCs generation remain uncertain, recent studies demonstrate the transition from cartilage to bone that in the lineage for bone development. SSCs possesses the ability to differentiate into bone and cartilage in vitro. In this research, we aimed to isolate and culture the skeletal stem cells from bovine cattle and then studied its biological characterization. The results showed that these bovine SSCs are positive for PDPN+CD73+CD164+CD90+CD44+ cell surface bio-markers, they are capable of self-renewal and differentiation. Our dates proved that SSCs exists in bovine’s long bone.


2009 ◽  
Vol 13 (6) ◽  
pp. 1175-1184 ◽  
Author(s):  
Ulrich Reinhart Goessler ◽  
Peter Bugert ◽  
Karen Bieback ◽  
Jens Stern-Straeter ◽  
Gregor Bran ◽  
...  

2020 ◽  
Author(s):  
Peilin Chen ◽  
Ziming Chen ◽  
Christopher Mitchell ◽  
Junjie Gao ◽  
Lianzhi Chen ◽  
...  

Abstract Background: Botulinum toxin (Botox) injection is in widespread clinical use for the treatment of muscle spasms and tendinopathy but the mechanism of action is poorly understood. Hypothesis: We hypothesised that the reduction of patellar-tendon mechanical-loading following intra-muscular injection of Botox results in tendon atrophy that is at least in part mediated by the induction of senescence of tendon-derived stem cells (TDSCs). Study Design: Controlled laboratory study Methods: A total of 36 mice were randomly divided in 2 groups (18 Botox-injected and 18 vehicle-only control). Mice were injected into to right vastus lateralis of quadriceps muscles either with Botox to induce mechanical stress deprivation of the patellar tendon or with normal saline as control. At 2 weeks post-injection, animals were euthanized prior to tissues harvest for either evaluation of tendon morphology or in vitro studies. TDSCs were isolated by cell-sorting prior to determination of viability, differentiation capacity and senescence markers, as well as assessing their response to mechanical loading in a bioreactor. Finally, to examine the mechanism of tendon atrophy in vitro, key proteins in the PTEN/AKT pathway were evaluated in TDSCs in both groups. Results: Two weeks after Botox injection, patellar tendons displayed atrophic features including tissue volume reduction and collagen fibre misalignment and increased degradation. The colony formation assay revealed the significantly reduced colony units of TDSCs in Botox injected group compared to controls. Multipotent differentiation capacity of TDSCs has also diminished after Botox injection. To examine if mechanical deprived TDSC is capable of forming tendon tissue, we used an isolated bioreactor system to culture 3D TDSCs constructs. The result showed that TDSCs from the Botox-treated group failed to restore tenogenic differentiation after appropriate mechanical loading. Examination of PTEN/AKT signalling pathway revealed that injection of Botox into quadriceps muscle causes PTEN/AKT mediated cell senescence of TDSCs. Conclusion: Intramuscular injection of Botox interferes with tendon homeostasis by inducing tendon atrophy and senescence of TDSCs. Botox injection may have long-term adverse consequences for the treatment of tendinopathy. Clinical relevance: Intramuscular Botox injection for tendinopathy and tendon injury could cause adverse effects in human tendons and re-evaluation of its long-term efficacy is warranted.


2020 ◽  
Vol 8 (21) ◽  
pp. 4680-4693
Author(s):  
Jirong Yang ◽  
Yumei Xiao ◽  
Zizhao Tang ◽  
Zhaocong Luo ◽  
Dongxiao Li ◽  
...  

The different negatively charged microenvironments of collagen hydrogels affect the protein adsorption, cell morphology, and chondrogenic differentiation of BMSCs in vitro and in vivo.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 347 ◽  
Author(s):  
Marta Anna Szychlinska ◽  
Giovanna Calabrese ◽  
Silvia Ravalli ◽  
Nunziatina Laura Parrinello ◽  
Stefano Forte ◽  
...  

Stem cell therapy and tissue engineering represent a promising approach for cartilage regeneration. However, they present limits in terms of mechanical properties and premature de-differentiation of engineered cartilage. Cycloastragenol (CAG), a triterpenoid saponin compound and a hydrolysis product of the main ingredient in Astragalus membranaceous, has been explored for cartilage regeneration. The aim of this study was to investigate CAG’s ability to promote cell proliferation, maintain cells in their stable active phenotype, and support the production of cartilaginous extracellular matrix (ECM) in human adipose-derived mesenchymal stem cells (hAMSCs) in up to 28 days of three-dimensional (3D) chondrogenic culture. The hAMSC pellets were cultured in chondrogenic medium (CM) and in CM supplemented with CAG (CAG–CM) for 7, 14, 21, and 28 days. At each time-point, the pellets were harvested for histological (hematoxylin and eosin (H&E)), histochemical (Alcian-Blue) and immunohistochemical analysis (Type I, II, and X collagen, aggrecan, SOX9, lubricin). After excluding CAG’s cytotoxicity (MTT Assay), improved cell condensation, higher glycosaminoglycans (sGAG) content, and increased cell proliferation have been detected in CAG–CM pellets until 28 days of culture. Overall, CAG improved the chondrogenic differentiation of hAMSCs, maintaining stable the active chondrocyte phenotype in up to 28 days of 3D in vitro chondrogenic culture. It is proposed that CAG might have a beneficial impact on cartilage regeneration approaches.


2011 ◽  
Vol 29 (9) ◽  
pp. 1327-1335 ◽  
Author(s):  
Argiris Papathanasopoulos ◽  
Dimitrios Kouroupis ◽  
Karen Henshaw ◽  
Dennis McGonagle ◽  
Elena A. Jones ◽  
...  

2018 ◽  
Vol 127 ◽  
pp. S1255-S1256
Author(s):  
E. Stelcer ◽  
K. Kulcenty ◽  
M. Ruciński ◽  
K. Jopek ◽  
T. Trzeciak ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Jun Zhang ◽  
Ziming Liu ◽  
Yuwan Li ◽  
Qi You ◽  
Jibin Yang ◽  
...  

Background. FGF-2 (basic fibroblast growth factor) has a positive effect on the proliferation and differentiation of many kinds of MSCs. Therefore, it represents an ideal molecule to facilitate tendon-to-bone healing. Nonetheless, no studies have investigated the application of FGF-2-induced human amniotic mesenchymal stem cells (hAMSCs) to accelerate tendon-to-bone healing in vivo. Objective. The purpose of this study was to explore the effect of FGF-2 on chondrogenic differentiation of hAMSCs in vitro and the effect of FGF-2-induced hAMSCs combined with a human acellular amniotic membrane (HAAM) scaffold on tendon-to-bone healing in vivo. Methods. In vitro, hAMSCs were transfected with a lentivirus carrying the FGF-2 gene, and the potential for chondrogenic differentiation of hAMSCs induced by the FGF-2 gene was assessed using immunofluorescence and toluidine blue (TB) staining. HAAM scaffold was prepared, and hematoxylin and eosin (HE) staining and scanning electron microscopy (SEM) were used to observe the microstructure of the HAAM scaffold. hAMSCs transfected with and without FGF-2 were seeded on the HAAM scaffold at a density of 3×105 cells/well. Immunofluorescence staining of vimentin and phalloidin staining were used to confirm cell adherence and growth on the HAAM scaffold. In vivo, the rabbit extra-articular tendon-to-bone healing model was created using the right hind limb of 40 New Zealand White rabbits. Grafts mimicking tendon-to-bone interface (TBI) injury were created and subjected to treatment with the HAAM scaffold loaded with FGF-2-induced hAMSCs, HAAM scaffold loaded with hAMSCs only, HAAM scaffold, and no special treatment. Macroscopic observation, imageological analysis, histological assessment, and biomechanical analysis were conducted to evaluate tendon-to-bone healing after 3 months. Results. In vitro, cartilage-specific marker staining was positive for the FGF-2 overexpression group. The HAAM scaffold displayed a netted structure and mass extracellular matrix structure. hAMSCs or hAMSCs transfected with FGF-2 survived on the HAAM scaffold and grew well. In vivo, the group treated with HAAM scaffold loaded with FGF-2-induced hAMSCs had the narrowest bone tunnel after three months as compared with other groups. In addition, macroscopic and histological scores were higher for this group than for the other groups, along with the best mechanical strength. Conclusion. hAMSCs transfected with FGF-2 combined with the HAAM scaffold could accelerate tendon-to-bone healing in a rabbit extra-articular model.


2019 ◽  
Vol 2019 ◽  
pp. 1-20 ◽  
Author(s):  
K. Marycz ◽  
J. M. Irwin Houston ◽  
C. Weiss ◽  
M. Röcken ◽  
K. Kornicka

Recently, metabolic syndrome (MS) has gained attention in human and animal metabolic medicine. Insulin resistance, inflammation, hyperleptinemia, and hyperinsulinemia are critical to its definition. MS is a complex cluster of metabolic risk factors that together exert a wide range of effects on multiple organs, tissues, and cells in the body. Adipose stem cells (ASCs) are multipotent stem cell population residing within the adipose tissue that is inflamed during MS. Studies have indicated that these cells lose their stemness and multipotency during MS, which strongly reduces their therapeutic potential. They suffer from oxidative stress, apoptosis, and mitochondrial deterioration. Thus, the aim of this study was to rejuvenate these cells in vitro in order to improve their chondrogenic differentiation effectiveness. Pharmacotherapy of ASCs was based on resveratrol and 5-azacytidine pretreatment. We evaluated whether those substances are able to reverse aged phenotype of metabolic syndrome-derived ASCs and improve their chondrogenic differentiation at its early stage using immunofluorescence, transmission and scanning electron microscopy, real-time PCR, and flow cytometry. Obtained results indicated that 5-azacytidine and resveratrol modulated mitochondrial dynamics, autophagy, and ER stress, leading to the enhancement of chondrogenesis in metabolically impaired ASCs. Therefore, pretreatment of these cells with 5-azacytidine and resveratrol may become a necessary intervention before clinical application of these cells in order to strengthen their multipotency and therapeutic potential.


Sign in / Sign up

Export Citation Format

Share Document