scholarly journals Effects of ATP-binding cassette transporter G2 in extracellular vesicles on drug resistance of laryngeal cancer cells in in vivo and in vitro

2021 ◽  
Vol 21 (5) ◽  
Author(s):  
Yan Zhao ◽  
Yuetong Chen ◽  
Jing Wang ◽  
Liang Liu
2012 ◽  
Vol 82 (1) ◽  
pp. 47-58 ◽  
Author(s):  
Xiao-qin Zhao ◽  
Jing-dun Xie ◽  
Xing-gui Chen ◽  
Hong May Sim ◽  
Xu Zhang ◽  
...  

2014 ◽  
Vol 306 (12) ◽  
pp. H1610-H1618 ◽  
Author(s):  
Travis J. Maher ◽  
Yi Ren ◽  
Qinglu Li ◽  
Elizabeth Braunlin ◽  
Mary G. Garry ◽  
...  

Due to their specialized location, stem and progenitor cells are often exposed to oxidative stress. Although ATP-binding cassette transporter subfamily G member 2 (Abcg2)-expressing cells have been implicated in cardiac protective mechanisms involving oxidative stress, there remains a lack of understanding regarding the behavior of cardiac Abcg2-expressing cells when exposed to ROS. The aim of the present study was to characterize the response of the cardiac Abcg2 lineage to oxidative stress. In vitro analysis demonstrated that the antioxidant program regulated by Abcg2 is dependent on a functional transporter. Delivery of paraquat dichloride (PQ), a systemic oxidative stress-inducing agent, to mice confirmed that Abcg2 provides a survival benefit. When exposed to PQ, reporter mice showed an increase in the Abcg2 lineage. Transcriptional and immunohistochemical analysis of Abcg2 lineage-positive cells revealed an enhanced vascular commitment after stress. Finally, preconditioning with PQ demonstrated a reduction in scar size and an increase in angiogenesis after permanent left coronary artery ligation. In conclusion, the data suggest that Abcg2 plays a cytoprotective role in response to in vivo oxidative stress. The contribution of the Abcg2 lineage to the vasculature in the heart is increased after PQ delivery.


2012 ◽  
Vol 18 (1) ◽  
pp. 26-38 ◽  
Author(s):  
J. Jacob Strouse ◽  
Irena Ivnitski-Steele ◽  
Hadya M. Khawaja ◽  
Dominique Perez ◽  
Jerec Ricci ◽  
...  

Chemotherapeutics tumor resistance is a principal reason for treatment failure, and clinical and experimental data indicate that multidrug transporters such as ATP-binding cassette (ABC) B1 and ABCG2 play a leading role by preventing cytotoxic intracellular drug concentrations. Functional efflux inhibition of existing chemotherapeutics by these pumps continues to present a promising approach for treatment. A contributing factor to the failure of existing inhibitors in clinical applications is limited understanding of specific substrate/inhibitor/pump interactions. We have identified selective efflux inhibitors by profiling multiple ABC transporters against a library of small molecules to find molecular probes to further explore such interactions. In our primary screening protocol using JC-1 as a dual-pump fluorescent reporter substrate, we identified a piperazine-substituted pyrazolo[1,5-a]pyrimidine substructure with promise for selective efflux inhibition. As a result of a focused structure-activity relationship (SAR)–driven chemistry effort, we describe compound 1 (CID44640177), an efflux inhibitor with selectivity toward ABCG2 over ABCB1. Compound 1 is also shown to potentiate the activity of mitoxantrone in vitro as well as preliminarily in vivo in an ABCG2-overexpressing tumor model. At least two analogues significantly reduce tumor size in combination with the chemotherapeutic topotecan. To our knowledge, low nanomolar chemoreversal activity coupled with direct evidence of efflux inhibition for ABCG2 is unprecedented.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi213-vi213
Author(s):  
Nadim Tawil ◽  
Rayhaan Bassawon ◽  
Brian Meehan ◽  
Laura Montermini ◽  
Ali Nehme ◽  
...  

Abstract BACKGROUND Vascular anomalies, including thrombosis, are a hallmark of glioblastoma (GBM) and an aftermath of dysregulated cancer cell genome and epigenome. Up-regulation of podoplanin (PDPN) by cancer cells has recently been linked to an increased risk of venous thromboembolism in glioblastoma patients. Thus, regulation of this platelet activating protein by transforming events and release from cancer cells is of considerable interest. AIMS I. Investigate the pattern of PDPN expression and characterize PDPN-expressing cellular populations in GBM. II. Evaluate the contribution of oncogenic drivers to PDPN expression in GBM models. III. Investigate the potential involvement of extracellular vesicles (EVs) as a mechanism for systemic dissemination of PDPN and tissue factor (TF). IV. Examine the role of PDPN in intratumoral and systemic thrombosis. METHODS Bioinformatics (single-cell and bulk transcriptome data mining), GBM cell lines and stem cell lines, xenograft models in mice, ELISA assays for PDPN and TF, platelet (PF4) and clotting activation markers (D-dimer), EV electron microscopy, density gradient fractionation, and nano-flow cytometry. RESULTS PDPN is expressed by distinct glioblastoma cell subpopulations (mesenchymal) and downregulated by oncogenic mutations of EGFR and IDH1 genes, via changes in chromatin modifications (EZH2) and DNA methylation, respectively. GBM cells exteriorize PDPN and/or TF as cargo of exosome-like EVs shed both in vitro and in vivo. Injection of glioma PDPN-EVs activates platelets. Increase of platelet activation (PF4) or coagulation markers (D-dimer) occurs in mice harboring the corresponding glioma xenografts expressing PDPN or TF, respectively. Co-expression of PDPN and TF by GBM cells cooperatively increases tumor microthrombosis. CONCLUSION Distinct cellular subsets drive multiple facets of GBM-associated thrombosis and may represent targets for diagnosis and intervention. We suggest that the preponderance of PDPN expression as a risk factor in glioblastoma and the involvement of platelets may merit investigating anti-platelets for potential inclusion in thrombosis management in GBM.


2021 ◽  
Vol 13 ◽  
Author(s):  
Dongmei Wu ◽  
Yang Hu ◽  
Min Song ◽  
Gongbo Li

Abnormal amyloid beta (Aβ) clearance is a distinctive pathological mechanism for Alzheimer’s disease (AD). ATP-binding cassette transporter A1 (ABCA1), which mediates the lipidation of apolipoprotein E, plays a critical role in Aβ clearance. As an environmental factor for AD, dichlorodiphenyltrichloroethane (DDT) can decrease ATP-binding cassette transporter A1 (ABCA1) expression and disrupt Aβ clearance. Liver X receptor α (LXRα) is an autoregulatory transcription factor for ABCA1 and a target of some environmental pollutants, such as organophosphate pesticides. In this study, we aimed to investigate whether DDT could affect Aβ clearance by targeting LXRα. The DDT-pretreated H4 human neuroglioma cells and immortalized astrocytes were incubated with exogenous Aβ to evaluate Aβ consumption. Meanwhile, cytotoxicity and LXRα expression were determined in the DDT-treated cells. Subsequently, the antagonism of DDT on LXRα agonist T0901317 was determined in vitro. The interaction between DDT and LXRα was predicted by molecular docking and molecular dynamics simulation technology. We observed that DDT could inhibit Aβ clearance and decrease the levels of LXRα mRNA and LXRα protein. Moreover, DDT is supposed to strongly bind to LXRα and exert antagonistic effects on LXRα. In conclusion, this study firstly presented that DDT could inhibit LXRα expression, which would contribute to Aβ clearance decline in vitro. It provides an experimental basis to search for potential therapeutic targets of AD.


2021 ◽  
Vol 5 (6) ◽  
pp. 1682-1694
Author(s):  
Nadim Tawil ◽  
Rayhaan Bassawon ◽  
Brian Meehan ◽  
Ali Nehme ◽  
Laura Montermini ◽  
...  

Abstract Vascular anomalies, including local and peripheral thrombosis, are a hallmark of glioblastoma (GBM) and an aftermath of deregulation of the cancer cell genome and epigenome. Although the molecular effectors of these changes are poorly understood, the upregulation of podoplanin (PDPN) by cancer cells has recently been linked to an increased risk for venous thromboembolism (VTE) in GBM patients. Therefore, regulation of this platelet-activating protein by transforming events in cancer cells is of considerable interest. We used single-cell and bulk transcriptome data mining, as well as cellular and xenograft models in mice, to analyze the nature of cells expressing PDPN, as well as their impact on the activation of the coagulation system and platelets. We report that PDPN is expressed by distinct (mesenchymal) GBM cell subpopulations and downregulated by oncogenic mutations of EGFR and IDH1 genes, along with changes in chromatin modifications (enhancer of zeste homolog 2) and DNA methylation. Glioma cells exteriorize their PDPN and/or tissue factor (TF) as cargo of exosome-like extracellular vesicles (EVs) shed from cells in vitro and in vivo. Injection of glioma-derived podoplanin carrying extracelluar vesicles (PDPN-EVs) activates platelets, whereas tissue factor carrying extracellular vesicles (TF-EVs) activate the clotting cascade. Similarly, an increase in platelet activation (platelet factor 4) or coagulation (D-dimer) markers occurs in mice harboring the corresponding glioma xenografts expressing PDPN or TF, respectively. Coexpression of PDPN and TF by GBM cells cooperatively affects tumor microthrombosis. Thus, in GBM, distinct cellular subsets drive multiple facets of cancer-associated thrombosis and may represent targets for phenotype- and cell type–based diagnosis and antithrombotic intervention.


Sign in / Sign up

Export Citation Format

Share Document