scholarly journals Labelling strategies in metabarcoding studies & how to ensure that nucleotide tags stay in place

2021 ◽  
Vol 4 ◽  
Author(s):  
Kristine Bohmann ◽  
Christian Carøe

Labelling strategies in metabarcoding studies & how to ensure that nucleotide tags stay in place Metabarcoding of environmental DNA (eDNA) and DNA extracted from bulk specimen samples is a powerful tool in studies of ecological interactions, diet and biodiversity, as its labelling of amplicons allows high-throughput sequencing of taxonomically informative DNA sequences from many samples in parallel. The backbone of metabarcoding is the addition of sample-specific nucleotide identifiers to amplicons and then following sequencing using these to assign metabarcoding sequences to the samples they originated from. This allows the pooling of hundreds to thousands of samples before sequencing and thereby full utilisation of the capacity of high-throughput sequencing platforms. The nucleotide identifiers can be added both during the metabarcoding PCR and during library preparation, i.e. when amplicons are prepared for sequencing. There are three main strategies with which to achieve nucleotide labelling in metabarcoding studies. One commonly used strategy is the so-called tagged PCR approach in which DNA extracts are individually amplified with metabarcoding primers that carry sample-specific nucleotide tags at the 5’ end. The uniquely tagged products are then pooled and a library prepared on the pool of amplicons. However, tag‐jumps have been documented in this commonly used metabarcoding approach (Schnell et al. 2015). Tag-jumps cause nucleotide tags to switch between amplicons, resulting in occurrence of amplicons that carry different tags than originally applied. Sequences in the sequencing output that carry tag combinations not used in the study design are easily identified and excluded. However, sequences carrying incorrect, but already used, tag combinations will cause incorrect assignments of sequences to samples. This can - much to the detriment of metabarcoding studies - lead to false positives and artificial inflation of diversity in the samples (Schnell et al. 2015). The occurrence of tag-jumps has led to recommendations to only carry out metabarcoding PCR amplifications with primers carrying twin-tags to ensure that tag‐jumps cannot result in false assignments of sequences to samples (Schnell et al. 2015). However, this increases both cost and workload of metabarcoding studies. In a recently published article, we demonstrate a tag-jump free single-tube library preparation protocol for Illumina sequencing specifically designed for 5’ nucleotide tagged amplicons, the Tagsteady protocol (Carøe & Bohmann 2020). We designed the Tagsteady protocol to circumvent the two steps during library preparation of pools of 5ʹ nucleotide-tagged amplicons that had previously been suggested to cause tag-jumps; i) T4 DNA polymerase blunt-ending in the end-repair step, and ii) post-ligation PCR amplification of amplicon libraries. We used pools of twin‐tagged amplicons to investigate the effect of these two steps on the occurrence of tag‐jumps. Doing this, we demonstrated that blunt‐ending and post-ligation PCR, alone or together, can result in high proportions of tag-jumps, in our study up to ca. 49% of total sequences. The Tagsteady protocol where both these steps were left out resulted in tag‐jump levels comparable to background contamination (Carøe & Bohmann 2020). In our study, we encourage practitioners to avoid using T4 DNA polymerase blunt‐ending and post-ligation PCR in library preparation of 5’ nucleotide tagged amplicon pools, for example by using the Tagsteady protocol (Carøe & Bohmann 2020). This will enable efficient and cost-effective generation of metabarcoding data with correct assignment of sequences to samples. References Carøe C, Bohmann K (2020) Tagsteady: A metabarcoding library preparation protocol to avoid false assignment of sequences to samples. Molecular Ecology Resources, 20, 1620–1631. Schnell IB, Bohmann K, Gilbert MTP (2015) Tag jumps illuminated - reducing sequence-to-sample misidentifications in metabarcoding studies. Molecular Ecology Resources, 15, 1289–1303.


Author(s):  
Christian Carøe ◽  
Kristine Bohmann

AbstractMetabarcoding of environmental DNA (eDNA) and DNA extracted from bulk specimen samples is a powerful tool in studies of biodiversity, diet and ecological interactions as its inherent labelling of amplicons allows sequencing of taxonomically informative genetic markers from many samples in parallel. However, the occurrence of so-called ‘tag-jumps’ can cause incorrect assignment of sequences to samples and artificially inflate diversity. Two steps during library preparation of pools of 5’ nucleotide-tagged amplicons have been suggested to cause tag-jumps; i) T4 DNA polymerase blunt-ending in the end-repair step and ii) post-ligation PCR amplification of amplicon libraries. The discovery of tag-jumps has led to recommendations to only carry out metabarcoding PCR amplifications with primers carrying twin-tags to ensure that tag-jumps cannot result in false assignments of sequences to samples. As this increases both cost and workload, a metabarcoding library preparation protocol which circumvents the two steps that causes tag-jumps is needed. Here, we demonstrate Tagsteady, a metabarcoding Illumina library preparation protocol for pools of nucleotide-tagged amplicons that enables efficient and cost-effective generation of metabarcoding data with virtually no tag-jumps. We use pools of twin-tagged amplicons to investigate the effect of T4 DNA polymerase blunt-ending and post-ligation PCR on the occurrence of tag-jumps. We demonstrate that both blunt-ending and post-ligation PCR, alone or together, can result in detrimental amounts of tag-jumps (here, up to ca. 49% of total sequences), while leaving both steps out (the Tagsteady protocol) results in amounts of sequences carrying new combinations of used tags (tag-jumps) comparable to background contamination.



2015 ◽  
Author(s):  
M.V. Cannon ◽  
J. Hester ◽  
A. Shalkhauser ◽  
E.R. Chan ◽  
K. Logue ◽  
...  

Analysis of environmental DNA (eDNA) enables the detection of species of interest from water and soil samples, typically using species-specific PCR. Here, we describe a method to characterize the biodiversity of a given environment by amplifying eDNA using primer pairs targeting a wide range of taxa and high-throughput sequencing for species identification. We tested this approach on 91 water samples of 40 mL collected along the Cuyahoga River (Ohio, USA). We amplified eDNA using 12 primer pairs targeting mammals, fish, amphibians, birds, bryophytes, arthropods, copepods, plants and several microorganism taxa and sequenced all PCR products simultaneously by high-throughput sequencing. Overall, we identified DNA sequences from 15 species of fish, 17 species of mammals, 8 species of birds, 15 species of arthropods, one turtle and one salamander. Interestingly, in addition to aquatic and semiaquatic animals, we identified DNA from terrestrial species that live near the Cuyahoga River. We also identified DNA from one Asian carp species invasive to the Great Lakes but that had not been previously reported in the Cuyahoga River. Our study shows that analysis of eDNA extracted from small water samples using wide-range PCR amplification combined with high-throughput sequencing can provide a broad perspective on biological diversity.



2021 ◽  
Author(s):  
Marc Fuchs ◽  
Clara Radulescu ◽  
Miao Tang ◽  
Arun Mahesh ◽  
Deborah Lavin ◽  
...  

Introduction: The COVID-19 pandemic has highlighted the importance of whole genome sequencing (WGS) of SARS-CoV-2 to inform public health policy. By enabling definition of lineages it facilitates tracking of the global spread of the virus. The evolution of new variants can be monitored and knowledge of specific mutations provides insights into the mechanisms through which the virus increases transmissibility or evades immunity. To date almost one million SARS-CoV-2 genomes have been sequenced by members of the COVID-19 Genomics UK (COG-UK) Consortium. To achieve similar feats in a more cost-effective and sustainable manner in future, improved high throughput virus sequencing protocols are required. We have therefore developed a miniaturized library preparation protocol with drastically reduced consumable use and costs. Methods: SARS-CoV-2 RNA was amplified using the ARTIC nCov-2019 multiplex RT-PCR protocol and purified using a conventional liquid handling system. Acoustic liquid transfer (Echo 525) was employed to reduce reaction volumes and the number of tips required for a Nextera XT library preparation. Sequencing was performed on an Illumina MiSeq. Results: We present the 'Mini-XT' miniaturized tagmentation-based library preparation protocol available on protocols.io (https://dx.doi.org/10.17504/protocols.io.bvntn5en). The final version of Mini-XT has been used to sequence 4,384 SARS-CoV-2 samples from N. Ireland with a COG-UK QC pass rate of 97.4%. Sequencing quality was comparable and lineage calling consistent for replicate samples processed with full volume Nextera DNA Flex (333 samples) or using nanopore technology (20 samples). SNP calling between Mini-XT and these technologies was consistent and sequences from replicate samples paired together in maximum likelihood phylogenetic trees. Conclusion: The Mini-XT protocol maintains sequence quality while reducing library preparation reagent volumes 8-fold and halving overall tip usage from sample to sequence to provide concomitant cost savings relative to standard protocols. This will enable more efficient high-throughput sequencing of SARS-CoV-2 isolates and future pathogen WGS.



Author(s):  
E.V. Korneenko ◽  
◽  
А.E. Samoilov ◽  
I.V. Artyushin ◽  
M.V. Safonova ◽  
...  

In our study we analyzed viral RNA in bat fecal samples from Moscow region (Zvenigorod district) collected in 2015. To detect various virus families and genera in bat fecal samples we used PCR amplification of viral genome fragments, followed by high-throughput sequencing. Blastn search of unassembled reads revealed the presence of viruses from families Astroviridae, Coronaviridae and Herpesviridae. Assembly using SPAdes 3.14 yields contigs of length 460–530 b.p. which correspond to genome fragments of Coronaviridae and Astroviridae. The taxonomy of coronaviruses has been determined to the genus level. We also showed that one bat can be a reservoir of several virus genuses. Thus, the bats in the Moscow region were confirmed as reservoir hosts for potentially zoonotic viruses.



Viruses ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 566 ◽  
Author(s):  
Siemon Ng ◽  
Cassandra Braxton ◽  
Marc Eloit ◽  
Szi Feng ◽  
Romain Fragnoud ◽  
...  

A key step for broad viral detection using high-throughput sequencing (HTS) is optimizing the sample preparation strategy for extracting viral-specific nucleic acids since viral genomes are diverse: They can be single-stranded or double-stranded RNA or DNA, and can vary from a few thousand bases to over millions of bases, which might introduce biases during nucleic acid extraction. In addition, viral particles can be enveloped or non-enveloped with variable resistance to pre-treatment, which may influence their susceptibility to extraction procedures. Since the identity of the potential adventitious agents is unknown prior to their detection, efficient sample preparation should be unbiased toward all different viral types in order to maximize the probability of detecting any potential adventitious viruses using HTS. Furthermore, the quality assessment of each step for sample processing is also a critical but challenging aspect. This paper presents our current perspectives for optimizing upstream sample processing and library preparation as part of the discussion in the Advanced Virus Detection Technologies Interest group (AVDTIG). The topics include: Use of nuclease treatment to enrich for encapsidated nucleic acids, techniques for amplifying low amounts of virus nucleic acids, selection of different extraction methods, relevant controls, the use of spike recovery experiments, and quality control measures during library preparation.



PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0254971
Author(s):  
Federico Rossi ◽  
Alessandro Crnjar ◽  
Federico Comitani ◽  
Rodrigo Feliciano ◽  
Leonie Jahn ◽  
...  

Tree ring features are affected by environmental factors and therefore are the basis for dendrochronological studies to reconstruct past environmental conditions. Oak wood often provides the data for these studies because of the durability of oak heartwood and hence the availability of samples spanning long time periods of the distant past. Wood formation is regulated in part by epigenetic mechanisms such as DNA methylation. Studies of the methylation state of DNA preserved in oak heartwood thus could identify epigenetic tree ring features informing on past environmental conditions. In this study, we aimed to establish protocols for the extraction of DNA, the high-throughput sequencing of whole-genome DNA libraries (WGS) and the profiling of DNA methylation by whole-genome bisulfite sequencing (WGBS) for oak (Quercus robur) heartwood drill cores taken from the trunks of living standing trees spanning the AD 1776-2014 time period. Heartwood contains little DNA, and large amounts of phenolic compounds known to hinder the preparation of high-throughput sequencing libraries. Whole-genome and DNA methylome library preparation and sequencing consistently failed for oak heartwood samples more than 100 and 50 years of age, respectively. DNA fragmentation increased with sample age and was exacerbated by the additional bisulfite treatment step during methylome library preparation. Relative coverage of the non-repetitive portion of the oak genome was sparse. These results suggest that quantitative methylome studies of oak hardwood will likely be limited to relatively recent samples and will require a high sequencing depth to achieve sufficient genome coverage.



Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2337 ◽  
Author(s):  
Xixia Liu ◽  
Qi Lu ◽  
Sirui Chen ◽  
Fang Wang ◽  
Jianjun Hou ◽  
...  

We describe a multiple combined strategy to discover novel aptamers specific for clenbuterol (CBL). An immobilized ssDNA library was used for the selection of specific aptamers using the systematic evolution of ligands by exponential enrichment (SELEX). Progress was monitored using real-time quantitative PCR (Q-PCR), and the enriched library was sequenced by high-throughput sequencing. Candidate aptamers were picked and preliminarily identified using a gold nanoparticles (AuNPs) biosensor. Bioactive aptamers were characterized for affinity, circular dichroism (CD), specificity and sensitivity. The Q-PCR amplification curve increased and the retention rate was about 1% at the eighth round. Use of the AuNPs biosensor and CD analyses determined that six aptamers had binding activity. Affinity analysis showed that aptamer 47 had the highest affinity (Kd = 42.17 ± 8.98 nM) with no cross reactivity to CBL analogs. Indirect competitive enzyme linked aptamer assay (IC-ELAA) based on a 5′-biotin aptamer 47 indicated the limit of detection (LOD) was 0.18 ± 0.02 ng/L (n = 3), and it was used to detect pork samples with a mean recovery of 83.33–97.03%. This is the first report of a universal strategy including library fixation, Q-PCR monitoring, high-throughput sequencing, and AuNPs biosensor identification to select aptamers specific for small molecules.



protocols.io ◽  
2021 ◽  
Author(s):  
Elias Dahdouh ◽  
Fernando Lázaro Perona ◽  
María Rodríguez Tejedor ◽  
Rubén Cáceres Sánchez ◽  
Iván Bloise Sánchez ◽  
...  




Sign in / Sign up

Export Citation Format

Share Document