scholarly journals Tzeananiaceae, a new pleosporalean family associated with Ophiocordyceps macroacicularis fruiting bodies in Taiwan

MycoKeys ◽  
2018 ◽  
Vol 37 ◽  
pp. 1-17 ◽  
Author(s):  
Hiran A. Ariyawansa ◽  
Alan J.L. Phillips ◽  
Wei-Yu Chuang ◽  
Ichen Tsai

The order Pleosporales comprises a miscellaneous group of fungi and is considered to be the largest order of the class Dothideomycetes. The circumscription of Pleosporales has undergone numerous changes in recent years due to the addition of large numbers of families reported from various habitats and with a large amount of morphological variation. Many asexual genera have been reported in Pleosporales and can be either hyphomycetes or coelomycetes. Phoma-like taxa are common and have been shown to be polyphyletic within the order and allied with several sexual genera. During the exploration of biodiversity of pleosporalean fungi in Taiwan, a fungal strain was isolated from mycelium growing on the fruiting body of an Ophiocordyceps species. Fruiting structures that developed on PDA were morphologically similar to Phoma and its relatives in having pycnidial conidiomata with hyaline conidia. The fungus is characterised by holoblastic, cylindrical, aseptate conidiogenous cells and cylindrical, hyaline, aseptate, guttulated, thin-walled conidia. Phylogenetic analysis based on six genes, ITS, LSU, rpb2, SSU, tef1 and tub2, produced a phylogenetic tree with the newly generated sequences grouping in a distinct clade separate from all of the known families. Therefore, a new pleosporalean family Tzeananiaceae is established to accommodate the monotypic genus Tzeanania and the species T.taiwanensis in Pleosporales, Dothideomycetes. The Ophiocordyceps species was identified as O.macroacicularis and this is a new record in Taiwan.

Phytotaxa ◽  
2015 ◽  
Vol 227 (1) ◽  
pp. 55 ◽  
Author(s):  
Chayanard Phukhamsakda ◽  
Hiran A. Ariyawansa ◽  
Rungtiwa Phookamsak ◽  
Putarak Chomnunti ◽  
Timur S. Bulgakov ◽  
...  

Muriphaeosphaeria galatellae was collected from Galatella villosa in Russia and is introduced as a novel monotypic genus and species in the family Phaeosphaeriaceae (Pleosporales). Muriphaeosphaeria is distinct from other genera of the family Phaeosphaeriaceae by its unique suite of characters such as, superficial ascomata with an ascomatal wall comprising thin-walled brown cells, cellular pseudoparaphyses, muriform ascospores; and conidiomata with a thick hyaline inner wall layer producing cylindrical to subclavate, 1−3-transversely septate, brown conidia. The asexual morph of M. galatellae developed in cultures when grown on sterilized pine needles and bamboo pieces. A phylogenetic analysis based on combined LSU, SSU and ITS sequence data showed that M. galatellae forms a distinct lineage in Phaeosphaeriaceae. The new genus and species are introduced and compared with other taxa in the family.


Development ◽  
1970 ◽  
Vol 23 (2) ◽  
pp. 311-322
Author(s):  
D. R. Garrod ◽  
J. F. Palmer ◽  
L. Wolpert

An electrophysiological investigation of the migrating grex of the slime mould, Dictyostelium discoideum, has been carried out with two aims in view. It was hoped to obtain information which would be relevant to, first, the formation and regulation of cellular pattern in the grex, and secondly, the problem of grex movement. During migration the grex develops a simple, linear cellular pattern. The cells at the front become the so-called ‘prestalk’ cells which will form the stalk of the fruiting body while those at the back become ‘prespore’ cells and form spores at culmination (Raper, 1940; Bonner, 1944; Bonner & Slifkin, 1949). Moreover, this cellular pattern is capable of polarized regulation. Raper (1940) has shown that portions isolated from the front or back of the grex are capable of forming normally proportioned fruiting bodies. A number of workers have suggested that bio-electric potentials may be involved in regulation of linear cellular pattern.


Development ◽  
1976 ◽  
Vol 36 (2) ◽  
pp. 261-271
Author(s):  
Jonathan Rubin

Tips from fruiting bodies and conuses were transplanted into interphase fields of Dictyostelium discoideum amoebae. Progressively increasing concentrations of beef-heart phosphodiesterase added to the fields significantly decreased the chemotactic range of the responding amoebae. The findings suggest that the tip secretes c-AMP. We also find that the chemotactic range is independent of the size of the tip implying that the tip may produce a regulating gradient.


2021 ◽  
Author(s):  
Laszlo G Nagy ◽  
Peter Jan Vonk ◽  
Markus Kunzler ◽  
Csenge Foldi ◽  
Mate Viragh ◽  
...  

Fruiting bodies of mushroom-forming fungi (Agaricomycetes) are among the most complex structures produced by fungi. Unlike vegetative hyphae, fruiting bodies grow determinately and follow a genetically encoded developmental program that orchestrates tissue differentiation, growth and sexual sporulation. In spite of more than a century of research, our understanding of the molecular details of fruiting body morphogenesis is limited and a general synthesis on the genetics of this complex process is lacking. In this paper, we aim to comprehensively identify conserved genes related to fruiting body morphogenesis and distill novel functional hypotheses for functionally poorly characterized genes. As a result of this analysis, we report 921 conserved developmentally expressed gene families, only a few dozens of which have previously been reported in fruiting body development. Based on literature data, conserved expression patterns and functional annotations, we provide informed hypotheses on the potential role of these gene families in fruiting body development, yielding the most complete description of molecular processes in fruiting body morphogenesis to date. We discuss genes related to the initiation of fruiting, differentiation, growth, cell surface and cell wall, defense, transcriptional regulation as well as signal transduction. Based on these data we derive a general model of fruiting body development, which includes an early, proliferative phase that is mostly concerned with laying out the mushroom body plan (via cell division and differentiation), and a second phase of growth via cell expansion as well as meiotic events and sporulation. Altogether, our discussions cover 1480 genes of Coprinopsis cinerea, and their orthologs in Agaricus bisporus, Cyclocybe aegerita, Armillaria ostoyae, Auriculariopsis ampla, Laccaria bicolor, Lentinula edodes, Lentinus tigrinus, Mycena kentingensis, Phanerochaete chrysosporium, Pleurotus ostreatus, and Schizophyllum commune, providing functional hypotheses for ~10% of genes in the genomes of these species. Although experimental evidence for the role of these genes will need to be established in the future, our data provide a roadmap for guiding functional analyses of fruiting related genes in the Agaricomycetes. We anticipate that the gene compendium presented here, combined with developments in functional genomics approaches will contribute to uncovering the genetic bases of one of the most spectacular multicellular developmental processes in fungi. Key words: functional annotation; comparative genomics; cell wall remodeling; development; fruiting body morphogenesis; mushroom; transcriptome


2020 ◽  
Vol 14 (2) ◽  
pp. 435-459
Author(s):  
Harold W. Keller ◽  
Relf L. Price ◽  
Billy G. Stone ◽  
Edward D. Forrester

Arcyria versicolor (Trichiales: Trichiaceae) is a distinct myxomycete species described by William Phillips in 1877. The genus Arcyria dates back to Linnaeus in 1753 through the species A. denudata. Arcyria sporangia are brightly colored red, yellow, grey or white, mostly stalked, often in large groups easily seen with the naked eye. Approximately 54 species are known, many are common, and distributed worldwide. Collectors often encounter these colorful species on decaying logs as clusters of many sporangia often covering extensive areas. Arcyria versicolor, collected in the Valles Caldera National Preserve located in the Jemez Mountains of north central New Mexico, is a new record for the state. The nomenclatural history of this species is reviewed and the justification for selection of the species name versicolor is discussed. Arcyria versicolor is accepted as the valid species name and A. vitellina a synonym after examination of type specimens. Environmental parameters for coloration are discussed in general for fruiting bodies of Arcyria and more specifically for nivicolous snowbank species. Transitional stages of plasmodial color to mature fruiting body formation are described for Arcyria versicolor. More than 140 specimens of Arcyria versicolor fruiting bodies were examined with light microscopy and in part illustrated with multifocal computer stacked imaging. Higher magnifications were highlighted using scanning electron microscopy. A more complete and accurate species description is provided for Arcyria versicolor. Differences of fruiting body morphology including habit, color, dehiscence, peridial inner and outer surface features, capillitial ornamentation and size, spore color, size, and ornamentation, and stalk spore-like bodies are described and illustrated. Observation of type specimens from the type locality is illustrated, discussed, and nomenclatural evaluation given for the name selected. Mountain myxomycetes are reviewed based on the observations of T.H. Macbride and his early 1914 paper published in Mycologia. Collection data is presented that compares the dark-spored and light spored nivicolous myxomycetes in the French Alps. The history of renown collectors of nivicolous myxomycetes in western mountains of U.S.A. documents the discovery and study of this special ecological group of myxomycetes. This current paper is the first in a series from an ongoing research project entitled Myxomycetes of New Mexico.


2021 ◽  
Vol 288 (1963) ◽  
Author(s):  
Marco La Fortezza ◽  
Gregory J. Velicer

Aggregative multicellular development is a social process involving complex forms of cooperation among unicellular organisms. In some aggregative systems, development culminates in the construction of spore-packed fruiting bodies and often unfolds within genetically and behaviourally diverse conspecific cellular environments. Here, we use the bacterium Myxococcus xanthus to test whether the character of the cellular environment during aggregative development shapes its morphological evolution. We manipulated the cellular composition of Myxococcus development in an experiment in which evolving populations initiated from a single ancestor repeatedly co-developed with one of several non-evolving partners—a cooperator, three cheaters and three antagonists. Fruiting body morphology was found to diversify not only as a function of partner genotype but more broadly as a function of partner social character, with antagonistic partners selecting for greater fruiting body formation than cheaters or the cooperator. Yet even small degrees of genetic divergence between distinct cheater partners sufficed to drive treatment-level morphological divergence. Co-developmental partners also determined the magnitude and dynamics of stochastic morphological diversification and subsequent convergence. In summary, we find that even just a few genetic differences affecting developmental and social features can greatly impact morphological evolution of multicellular bodies and experimentally demonstrate that microbial warfare can promote cooperation.


Author(s):  
Yajie Zou, Fang Du, Haijun Zhang, Qingxiu Hu

Nowadays the study of selenium-rich mushrooms is very popular. In the present study, selenium speciation in fruiting body of Pleurotus tuoliensis was investigated in cultivation substrates with different concentrations of sodium selenite, as well as mycelia growth and mushroom development. The results showed that the P. tuoliensis mycelia appeared good tolerance to selenium at all test concentrations. A selenium concentration of 10 mg/kg promoted fruiting of P. tuoliensis; the fruiting bodies were of good quality and had a low malformation rate. HPLC–ICP-MS determined that organic seleniums enriched in stipes and caps existed mainly in the form of selenoCystine and selenoMethionine at selenium concentrations of 10-100 mg/kg. These findings suggest that P. tuoliensis could be developed as a selenium-rich mushroom product for use as a novel dietary source of bioavailable supplemental selenium.


Genes ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 490 ◽  
Author(s):  
Sharma ◽  
Gupta

The class Hematozoa encompasses several clinically important genera, including Plasmodium, whose members cause the major life-threating disease malaria. Hence, a good understanding of the interrelationships of organisms from this class and reliable means for distinguishing them are of much importance. This study reports comprehensive phylogenetic and comparative analyses on protein sequences on the genomes of 28 hematozoa species to understand their interrelationships. In addition to phylogenetic trees based on two large datasets of protein sequences, detailed comparative analyses were carried out on the genomes of hematozoa species to identify novel molecular synapomorphies consisting of conserved signature indels (CSIs) in protein sequences. These studies have identified 79 CSIs that are exclusively present in specific groups of Hematozoa/Plasmodium species, also supported by phylogenetic analysis, providing reliable means for the identification of these species groups and understanding their interrelationships. Of these CSIs, six CSIs are specifically shared by all hematozoa species, two CSIs serve to distinguish members of the order Piroplasmida, five CSIs are uniquely found in all Piroplasmida species except B. microti and two CSIs are specific for the genus Theileria. Additionally, we also describe 23 CSIs that are exclusively present in all genome-sequenced Plasmodium species and two, nine, ten and eight CSIs which are specific for members of the Plasmodium subgenera Haemamoeba, Laverania, Vinckeia and Plasmodium (excluding P. ovale and P. malariae), respectively. Additionally, our work has identified several CSIs that support species relationships which are not evident from phylogenetic analysis. Of these CSIs, one CSI supports the ancestral nature of the avian-Plasmodium species in comparison to the mammalian-infecting groups of Plasmodium species, four CSIs strongly support a specific relationship of species between the subgenera Plasmodium and Vinckeia and three CSIs each that reliably group P. malariae with members of the subgenus Plasmodium and P. ovale within the subgenus Vinckeia, respectively. These results provide a reliable framework for understanding the evolutionary relationships among the Plasmodium/Piroplasmida species. Further, in view of the exclusivity of the described molecular markers for the indicated groups of hematozoa species, particularly large numbers of unique characteristics that are specific for all Plasmodium species, they provide important molecular tools for biochemical/genetic studies and for developing novel diagnostics and therapeutics for these organisms.


2007 ◽  
Vol 189 (15) ◽  
pp. 5675-5682 ◽  
Author(s):  
James E. Berleman ◽  
John R. Kirby

ABSTRACT Myxococcus xanthus is a predatory bacterium that exhibits complex social behavior. The most pronounced behavior is the aggregation of cells into raised fruiting body structures in which cells differentiate into stress-resistant spores. In the laboratory, monocultures of M. xanthus at a very high density will reproducibly induce hundreds of randomly localized fruiting bodies when exposed to low nutrient availability and a solid surface. In this report, we analyze how M. xanthus fruiting body development proceeds in a coculture with suitable prey. Our analysis indicates that when prey bacteria are provided as a nutrient source, fruiting body aggregation is more organized, such that fruiting bodies form specifically after a step-down or loss of prey availability, whereas a step-up in prey availability inhibits fruiting body formation. This localization of aggregates occurs independently of the basal nutrient levels tested, indicating that starvation is not required for this process. Analysis of early developmental signaling relA and asgD mutants indicates that they are capable of forming fruiting body aggregates in the presence of prey, demonstrating that the stringent response and A-signal production are surprisingly not required for the initiation of fruiting behavior. However, these strains are still defective in differentiating to spores. We conclude that fruiting body formation does not occur exclusively in response to starvation and propose an alternative model in which multicellular development is driven by the interactions between M. xanthus cells and their cognate prey.


Nova Hedwigia ◽  
2020 ◽  
Vol 111 (1) ◽  
pp. 87-100
Author(s):  
Chiung-Chih Chang ◽  
Chi-Yu Chen ◽  
Wen-Wen Lin ◽  
Yu-Shen Shih ◽  
Hsiao-Wei Kao

Two new species and one new record of spinose Mycena were discovered in Taiwan. They are characterized by the presence of unicellular and erect spinose pilesetae on the surface of the pileipellis. The two new species (M. turandotiana and M. fengguan) have pileocystidia originating from hyphae of the pileipellis and thin-walled pileocystidia, while the new record (M. brunneisetosa) has thick-walled pileocystidia. Phylogenetic analyses suggest that the spinose structures in these Mycena resulted from convergent evolution.


Sign in / Sign up

Export Citation Format

Share Document