scholarly journals Plantaricin IIA-1A5 from Lactobacillus plantarum IIA-1A5 displays bactericidal activity against Staphylococcus aureus

2015 ◽  
Vol 6 (4) ◽  
pp. 603-613 ◽  
Author(s):  
I. Isnafia Arief ◽  
C. Budiman ◽  
B. Sri Laksmi Jenie ◽  
E. Andreas ◽  
A. Yuneni

Plantaricin IIA-1A5 is a bacteriocin produced by Lactobacillus plantarum IIA-1A5 isolated from Indonesian beef. This research aimed to identify the genes involved in plantaricin IIA-1A5 production and examine its mode of action against Staphylococcus aureus. It has been reported that a bacteriocin structural gene, plnW, is present in genome of L. plantarum IIA-1A5. Here, we reported the presence of additional genes responsible for plantaricin precursor (plnA and plnEF) and a gene encoding the quorum sensor of histidine kinase (plnB). It indicates that genes involved in production of plantaricin IIA-1A5 are organized in at least two bacteriocin operons (plnABCD, plnEFI) and a structural plnW gene. Purified plantaricin IIA-1A5 yielded a single band in SDS-PAGE with apparent size of 6.4 kDa. Amino acid composition of purified plantaricin IIA-1A5 was mainly composed of cationic glutamic acid and cysteine that allowed the formation of disulphide bonds, suggesting plantaricin IIA-1A5 belongs to the pediocin-subclass of class II bacteriocins. Plantaricin IIA-1A5 displayed remarkable antibacterial activity against S. aureus, which was initiated by the adsorption of plantaricin IIA-1A5 onto the cell membrane of S. aureus. The adsorption is hypothesised to be facilitated by non-ionic interactions as it is reduced by the presence of organic solvents or detergents. This adsorption promoted leakage of cellular metabolites through the cell membrane of S. aureus, as indicated by the release of genetic and proteinaceous material of S. aureus observed at 260 and 280 nm, respectively. The leakage also promoted the release of divalent (Ca2+, Mg2+) and monovalent (K+) cations. The release of these intracellular components might be due to pores formed in the cell membrane of S. aureus by plantaricin IIA-1A5 as shown by scanning electron microscopy. Altogether, the mode of action of plantaricin IIA-1A5 against S. aureus seems to be bactericidal as indicated by lysis of the cell membrane.

2008 ◽  
Vol 54 (7) ◽  
pp. 525-531 ◽  
Author(s):  
Reneé Pieterse ◽  
Svetoslav D. Todorov ◽  
Leon M.T. Dicks

Streptococcus gallolyticus subsp. macedonicus ST91KM produces a bacteriocin (macedocin ST91KM) active against Streptococcus agalactiae , Streptococcus dysgalactiae subsp. dysgalactiae , Streptococcus uberis , Staphylococcus aureus , and Staphylococcus epidermidis . Macedocin ST91KM is, according to tricine-SDS PAGE, between 2.0 and 2.5 kDa in size. Antimicrobial activity remained unchanged after 2 h of incubation at pH 2.0–10.0 and after 100 min at 100 °C. The peptide was inactivated after 20 min at 121 °C and when treated with proteolytic enzymes. Treatment with α-amylase had no effect on activity, suggesting that the mode of action does not depend on glycosylation. Amplification of the genome of strain ST91KM with primers designed from the macedocin precursor gene (mcdA) produced 2 fragments (approximately 375 and 220 bp) instead of one 150-bp fragment, as recorded for macedocin produced by Streptococcus gallolyticus subsp. macedonicus ACA-DC 198. Strain ACA-DC 198 was not available. However, DNA amplified from strain LMG 18488 (ACA-DC 206), genetically closely related to strain ACA-DC 198, revealed 99% homology to the mcdA of strain ACA-DC 198 (accession No. DQ835394). Macedocin ST91KM may thus be a second putative bacteriocin described for Streptococcus gallolyticus subsp. macedonicus.


2020 ◽  
Vol 9 (1) ◽  
pp. 30
Author(s):  
Mochammad Sriduresta Soenarno ◽  
Irma Isnafia Arief ◽  
Cece Sumantri ◽  
Epi Taufik ◽  
Lilis Nuraida

Bakteriosin adalah peptida dengan aktivitas antibakteri yang diproduksi oleh bakteri asam laktat dan digunakan sebagai pengawet alami. Penelitian sebelumnya menunjukkan bahwa Lactobacillus plantarum IIA-1A5 memproduksi bakteriosin yang diberi nama Plantarisin IIA-1A5 pada medium pertumbuhan yang dibuat dari whey yang diperkaya skim. Untuk aplikasi sebagai pengawet alami dan untuk memperbaiki masa simpan dan aktivitas anti mikrobanya, plantarisin perlu dienkapsulasi dan dikeringbekukan. Tujuan dari penelitian ini adalah untuk mengkarakterisasi dan mengevaluasi aktivitas antimikroba dari sediaan plantarisin IIA-1A5 yang terpurifikasi parsial dan terenkapsulasi kering beku. Ekstraksi dan purifikasi dari bakteriosin dimulai dengan presipitasi dengan ammonium sulfat, yang diikuti dengan dialysis, dan penukar kation kromatografi. Purifikasi parsial dari plantarisin kemudian dimikroenkapsulasi dengan maltodextrin kemudian dilanjutkan dengan proses kering beku. Berdasarkan pada SDS-PAGE, fraksi protein ke-7 (F7) dari plantarisin yang dipurifikasi parsial memiliki pita tunggal dan berat molekul sekitar 9,65 kDa. Konfirmasi lebih lanjut dengan menggunakan MALDI-TOF MS, ternyata pita tunggal tersebut terdiri dari 5 peptida yang diidentifikasi berbobot molekul masing-masing sebagai berikut 5,5, 7,80, 7,96, 9,09, dan 9,27 kDa. Plantarisin kering beku memiliki aktivitas antimikroba terhadap Staphylococcus  aureus tiga kali lipat dibandingkan dengan aktivitas antimikroba dari supernatan bebas sel, dan lebih tinggi dibandingkan dengan nisin, namun kurang bila dibandingkan dengan antibiotik ampisilin dan penisilin. Kesimpulannya, aktivitas antimikroba plantarisin kering beku dapat ditentukan dan lebih tinggi dibandingkan dengan nisin, ampisilin dan penisilin.Characterization of Plantarisin IIA-1A5 as Antimicrobial subtances and Evaluation of Acitivity of Freeze-dried Microencapsulated PreparationAbstractBacteriocins are peptides with antibacterial activity produced by lactic acid bacteria and used as natural preservatives. Previous studies showed that Lactobacillus plantarum IIA-1A5 produces bacteriocin named plantaricin IIA-1A5 in the medium consisting whey enriched with skim milk. For application as food preservatives and to improve its shelf-lie and activity, plantaricin was needed to be microencapsulated and freeze dried. The objective of this research was to characterize and evaluate the activity of partially purified freeze dried microencapsulated plantaricin IIA-1A5. Characterisation of partially purified plantaricin IIA-IA5 includes the identification of active fractions and molecular weight, evaluation of activity at different stage of purification and evaluation of antimicrobial activity of freeze dried microencapsulated plantaricin IIA-IA5. Extraction and prificafication of the bacteriocins started with precipitacion with ammonium sulfate, followed by dialysis, and cation exchange chromatography. The partial purified of plantaricin was then microencapsulated in maltodextrin followed by freeze drying. Based on SDS-PAGE, the protein fraction F7 of partially purified plantaricin had a single band and molecular weight about 9.65 kDa. Further analyses using MALDI-TOF, it revealed that five peptides were identified from one single band plantaricin with molecular weight 5.5, 7.80, 7.96, 9.09, and 9.27 kDa, respectively. The freeze dried plantaricin freeze showed antimicrobial activity against Staphylococcus aureus three times stringer as compared to the activity of cell free supernatant, and was higher than nicin, but less than antibiotic ampicilin and penicilin. As concusion, the activity of freeze dried plantaricin could be determined and had a higher value than nicin, ampicilin and penicilin.


2021 ◽  
Vol 16 (2) ◽  
pp. 1934578X2199615
Author(s):  
Lin Zhao ◽  
Yingying Zhao ◽  
Jinfeng Wei ◽  
Zhenhua Liu ◽  
Changqin Li ◽  
...  

The antimicrobial activity and the underlying action mechanisms of dihydrotanshinone I against Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, extended-spectrum beta-lactamases Staphylococcus aureus were investigated with Kleihauer-Betke (K-B) test. The antibacterial mechanisms of dihydrotanshinone I were investigated by monitoring the changes in electric conductivity, concentration of AKP, protein content, and patterns of protein electrophoretic bands in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The antibacterial rings showed that antimicrobial activity of dihydrotanshinone I at 18 mM was stronger to Staphylococcus aureus than to methicillin-resistant Staphylococcus aureus and extended-spectrum beta-lactamases Staphylococcus aureus. The minimum inhibitory concentration (MIC) and IC50 values showed that dihydrotanshinone I had the strongest inhibitory activity against S. aureus (MIC = 280 µM, IC50 = 874 ± 0.01 µM, respectively). Dihydrotanshinone I could increase the electric conductivity, concentration of alkaline phosphatase (AKP) and protein content. The patterns of protein bands in SDS-PAGE were changed obviously. Dihydrotanshinone I also significantly inhibited S. aureus, methicillin-resistant S. aureus, and extended-spectrum beta-lactamases S. aureus, indicating that dihydrotanshinone I can damage the structures of cell wall and cell membrane to increase permeability of cell membrane and release of cell components. Dihydrotanshinone I could influence the synthesis of bacterial protein, destroy the protein, or reject the anabolism or expression of the protein, and finally lead to the loss of normal physiological function of bacteria.


Author(s):  
Fatima N. Aziz ◽  
Laith Abdul Hassan Mohammed-Jawad

Food poisoning due to the bacteria is a big global problem in economically and human's health. This problem refers to an illness which is due to infection or the toxin exists in nature and the food that use. Milk is considered a nutritious food because it contains proteins and vitamins. The aim of this study is to detect and phylogeny characterization of staphylococcal enterotoxin B gene (Seb). A total of 200 milk and cheese samples were screened. One hundred ten isolates of Staphylococcus aureus pre-confirmed using selective and differential media with biochemical tests. Genomic DNA was extracted from the isolates and the SEB gene detects using conventional PCR with specific primers. Three staphylococcus aureus isolates were found to be positive for Seb gene using PCR and confirmed by sequencing. Sequence homology showed variety range of identity starting from (100% to 38%). Phylogenetic tree analyses show that samples (6 and 5) are correlated with S. epidermidis. This study discovered that isolates (A6-RLQ and A5-RLQ) are significantly clustered in a group with non- human pathogen Staphylococcus agnetis.


Author(s):  
Anna Biernasiuk ◽  
Anna Berecka-Rycerz ◽  
Anna Gumieniczek ◽  
Maria Malm ◽  
Krzysztof Z. Łączkowski ◽  
...  

Abstract Recently, the occurrence of candidiasis has increased dramatically, especially in immunocompromised patients. Additionally, their treatment is often ineffective due to the resistance of yeasts to antimycotics. Therefore, there is a need to search for new antifungals. A series of nine newly synthesized thiazole derivatives containing the cyclopropane system, showing promising activity against Candida spp., has been further investigated. We decided to verify their antifungal activity towards clinical Candida albicans isolated from the oral cavity of patients with hematological malignancies and investigate the mode of action on fungal cell, the effect of combination with the selected antimycotics, toxicity to erythrocytes, and lipophilicity. These studies were performed by the broth microdilution method, test with sorbitol and ergosterol, checkerboard technique, erythrocyte lysis assay, and reversed phase thin-layer chromatography, respectively. All derivatives showed very strong activity (similar and even higher than nystatin) against all C. albicans isolates with minimal inhibitory concentration (MIC) = 0.008–7.81 µg/mL Their mechanism of action may be related to action within the fungal cell wall structure and/or within the cell membrane. The interactions between the derivatives and the selected antimycotics (nystatin, chlorhexidine, and thymol) showed additive effect only in the case of combination some of them and thymol. The erythrocyte lysis assay confirmed the low cytotoxicity of these compounds as compared to nystatin. The high lipophilicity of the derivatives was related with their high antifungal activity. The present studies confirm that the studied thiazole derivatives containing the cyclopropane system appear to be a very promising group of compounds in treatment of infections caused by C. albicans. However, this requires further studies in vivo. Key points • The newly thiazoles showed high antifungal activity and some of them — additive effect in combination with thymol. • Their mode of action may be related with the influence on the structure of the fungal cell wall and/or the cell membrane. • The low cytotoxicity against erythrocytes and high lipophilicity of these derivatives are their additional good properties. Graphical abstract


Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 427
Author(s):  
Martyna Kasela ◽  
Agnieszka Grzegorczyk ◽  
Bożena Nowakowicz-Dębek ◽  
Anna Malm

Nursing homes (NH) contribute to the regional spread of methicillin-resistant Staphylococcus aureus (MRSA). Moreover, residents are vulnerable to the colonization and subsequent infection of MRSA etiology. We aimed at investigating the molecular and phenotypic characteristics of 21 MRSA collected from the residents and personnel in an NH (Lublin, Poland) during 2018. All MRSA were screened for 20 genes encoding virulence determinants (sea-see, eta, etb, tst, lukS-F-PV, eno, cna, ebpS, fib, bbp, fnbA, fnbB, icaADBC) and for resistance to 18 antimicrobials. To establish the relatedness and clonal complexes of MRSA in NH we applied multiple-locus variable-number tandem-repeat fingerprinting (MLVF), pulse field gel electrophoresis (PFGE), multilocus sequence typing (MLST) and staphylococcal cassette chromosome mec (SCCmec) typing. We identified four sequence types (ST) among two clonal complexes (CC): ST (CC22) known as EMRSA-15 as well as three novel STs—ST6295 (CC8), ST6293 (CC8) and ST6294. All tested MRSA were negative for sec, eta, etb, lukS-F-PV, bbp and ebpS genes. The most prevalent gene encoding toxin was sed (52.4%; n = 11/21), and adhesins were eno and fnbA (100%). Only 9.5% (n = 2/21) of MRSA were classified as multidrug-resistant. The emergence of novel MRSA with a unique virulence and the presence of epidemic clone EMRSA-15 creates challenges for controlling the spread of MRSA in NH.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 99
Author(s):  
Xinyi Wu ◽  
Yichen Li ◽  
Faisal Raza ◽  
Xuerui Wang ◽  
Shulei Zhang ◽  
...  

Multiple drug resistance (MDR) in bacterial infections is developed with the abuse of antibiotics, posing a severe threat to global health. Tedizolid phosphate (TR-701) is an efficient prodrug of tedizolid (TR-700) against gram-positive bacteria, including methicillin-sensitive staphylococcus aureus (MSSA) and methicillin-resistant staphylococcus aureus (MRSA). Herein, a novel drug delivery system: Red blood cell membrane (RBCM) coated TR-701-loaded polylactic acid-glycolic acid copolymer (PLGA) nanoparticles (RBCM-PLGA-TR-701NPs, RPTR-701Ns) was proposed. The RPTR-701Ns possessed a double-layer core-shell structure with 192.50 ± 5.85 nm in size, an average encapsulation efficiency of 36.63% and a 48 h-sustained release in vitro. Superior bio-compatibility was confirmed with red blood cells (RBCs) and HEK 293 cells. Due to the RBCM coating, RPTR-701Ns on one hand significantly reduced phagocytosis by RAW 264.7 cells as compared to PTR-701Ns, showing an immune escape effect. On the other hand, RPTR-701Ns had an advanced exotoxins neutralization ability, which helped reduce the damage of MRSA exotoxins to RBCs by 17.13%. Furthermore, excellent in vivo bacteria elimination and promoted wound healing were observed of RPTR-701Ns with a MRSA-infected mice model without causing toxicity. In summary, the novel delivery system provides a synergistic antibacterial treatment of both sustained release and bacterial toxins absorption, facilitating the incorporation of TR-701 into modern nanotechnology.


Antibiotics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 543
Author(s):  
Ozioma F. Nwabor ◽  
Sukanlaya Leejae ◽  
Supayang P. Voravuthikunchai

As the burden of antibacterial resistance worsens and treatment options become narrower, rhodomyrtone—a novel natural antibiotic agent with a new antibacterial mechanism—could replace existing antibiotics for the treatment of infections caused by multi-drug resistant Gram-positive bacteria. In this study, rhodomyrtone was detected within the cell by means of an easy an inexpensive method. The antibacterial effects of rhodomyrtone were investigated on epidemic methicillin-resistant Staphylococcus aureus. Thin-layer chromatography demonstrated the entrapment and accumulation of rhodomyrtone within the bacterial cell wall and cell membrane. The incorporation of radiolabelled precursors revealed that rhodomyrtone inhibited the synthesis of macromolecules including DNA, RNA, proteins, the cell wall, and lipids. Following the treatment with rhodomyrtone at MIC (0.5–1 µg/mL), the synthesis of all macromolecules was significantly inhibited (p ≤ 0.05) after 4 h. Inhibition of macromolecule synthesis was demonstrated after 30 min at a higher concentration of rhodomyrtone (4× MIC), comparable to standard inhibitor compounds. In contrast, rhodomyrtone did not affect lipase activity in staphylococci—both epidemic methicillin-resistant S. aureus and S. aureus ATCC 29213. Interfering with the synthesis of multiple macromolecules is thought to be one of the antibacterial mechanisms of rhodomyrtone.


2020 ◽  
Vol 153 ◽  
pp. 539-544 ◽  
Author(s):  
Zichao Wang ◽  
Qingqing Yang ◽  
Xueqin Wang ◽  
Ruifang Li ◽  
Hanzhen Qiao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document